Department of Electrical Engineering University of Arkansas



# ELEG 5693 Wireless Communications Test 2 Review

Dr. Jingxian Wu wuj@uark.edu

## CODING

#### • Introduction

- Source code, channel code; only in digital communication system.

#### • Source code

- Convert analog signal to digital signal; reduce redundancy in digital signal representation.
- Loseless source code; source code without loss.
- Sampling theorem: sampling rate  $\geq 2 \times maximum$  bandwidth
- PCM: sampling and quantization
- Entropy: how to calculate entropy.
- Speech coding:
  - waveform coder (PCM)
  - Vocoder: encoding by extracting the parameters of speech signal (LPC)



## CODING

### Channel coding

- Protect the transmitted information by adding redundancy.
- Error detection, error correction
- Channel capacity: the maximum data rate supported by a channel given bandwidth and SNR.

### Convolutional code

- (n, k, K). # of states
- Register representation; input-output table; state transition diagram; trellis diagram.
- Encoding
- Optimum hard decoding: find the codeword with the smallest Hamming distance
- Viterbi algorithm
- Interleaving
  - What is interleaving? Why does it help?
  - Block interleaving and deinterleaving



# EQUALIZATION

### • Introduction

– Intersymbol interference in frequency selective fading

$$y_{k} = \sum_{l=0}^{L-1} h_{l}(k) x_{k-l} + n_{k}$$

- equalization: signal processing employed at receiver to mitigate ISI.
- Linear equalization: ZF, LMS, etc.
- Nonlinear equalization: DFE, MLSE, etc. (MLSE is the optimum one)
- MLSE
  - Cost function of maximum likelihood sequence estimation. (Euclidean distance)
  - State representation of ISI system: # of states; register representation; trellis diagram
  - Viterbi algorithm: minimize the accumulated Euclidean distance.



# DIVERSITY

#### • Introduction

- What is diversity. (multiple replica, statistical independent channel)
- Utilizing the properties of fading (time varying, frequency selective)

### Classification

- Time diversity (channel coherence time).
  - Example: interleaving
- Frequency diversity (coherence bandwidth)
  - Example: frequency selective fading with equalization
- Space diversity
  - Receive diversity, transmit diversity
  - SIMO, MISO, MIMO



# DIVERSITY

## • Space diversity

- Instantaneous SNR of non-diversity system
- Selection diversity: operation; instantaneous SNR
- MRC (optimum one): operation; instantaneous SNR
- EGC: operation; instantaneous SNR.

## Orthogonal space time block coding

- 2 Tx, 1 Rx (operations, SNR)
- 2 Tx, M Rx (operations, SNR)



# MULTICARRIER

#### • Introduction

- MCM
- Why MCM?
- Frequency diversity, time diversity
- OFDM
  - DFT, IDFT, linear convolution, circular convolution
  - Cyclic prefix
  - Transmitter and receiver structure of OFDM
  - Matrix representation of OFDM
- Challenges
  - PAPR
  - Frequency and timing offset
- IEEE 802.11a



## CDMA

## • Fundamentals

- What is CDMA?
- Classifications: DSSS, FHSS
- Inner product, orthogonal
- Operations: transmitter, receiver, multiple access
- PN code: auto-correlation (noise like), cross-correlation (small)
- MAI:
  - users are not perfectly synchronized;
  - spreading code not perfectly orthogonal.
  - Near-far effect.
- Bandwidth: spread spectrum
- Processing gain (narrow band interference)



## CDMA

#### • PN sequence

- Walsh code
  - How to generate
  - Demonstrate that two codes are orthogonal.
- M-sequence:
  - Shift register
  - Sequence length
  - Long sequence, short sequence

#### Rake receiver

- Rake finger
- Due to the low correlation between the shifted version of the same signal, each finger can be treated as flat fading.
  - No equalization needed.

### Advantages of CDMA

 Resistant to narrow band interference; No equalization; multiple users share the same spectrum; good security.



# WIRELESS NETWORK

## • Ad-hoc wireless network

- Concept: ad hoc v.s. infrastructure
- Protocol layers
  - Vertical: service
  - Horizontal: Protocol
  - Concepts: network architecture, protocol, protocol stack, PDU
  - OSI model: physical, data link (MAC sublayer), network, transport, session, presentation, application
- Cross-layer design

