Department of Electrical Engineering University of Arkansas

ELEG 5693 Wireless Communications Ch. 9 Wireless Netowrks

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Ad hoc wireless networks
- Protocol layers
- Cross-layer design

AD HOC WIRELESS NETWORKS

• Ad hoc wireless network

- A collection of wireless mobile nodes that self-configure to form a network without the aid of any established infrastructure.
- Ad hoc: with little or no planning, fashioned from whatever is immediately available
- Different from: infrastructure-based network (such as cellular network)
- Allow people and devices to seamlessly internetwok in areas with no preexisting communication infrastructure.
 - No pre-installed basestations
- Self-organizing, Rapidly deployed
 - Nodes cooperate to provide connectivity \rightarrow multihop relay.
 - Easily enable instantaneous person-to-person, person-to-machine, or machine-to-person communications.
- Self-healing
 - Even we one or some nodes break down, the network can still operate.

AD HOC WIRELESS NETWORKS

• Examples

- Ad-hoc mode of IEEE 802.11
 - IEEE 802.11 (Wireless LAN) has two modes
 - Infrastructure mode: wireless router, laptops
 - Ad-hoc mode: no wireless router.
 - » Laptops can directly talk with one another without router.
- Mesh extension of IEEE 802.16
 - Regular operation of IEEE 802.16 (WiMax) requires basestation.
 - Mesh extension can provide services to users that do not have good coverage from BS.
 - Signals are relayed from other users.
- Soldiers equipped with multimode mobile communication devices on battle field
 - No fixed wireless base station or pre-installed infrastructrue are needed.
- Small vehicular devices equipped with sensors in hostile environment to collect data.
 - Data are relayed by the sensor nodes.
- Ship-to-ship ad-hoc communication
 - Doesn't need the assistance from satellite.
- Police, rescue, etc.

AD HOC WIRELESS NETWORKS

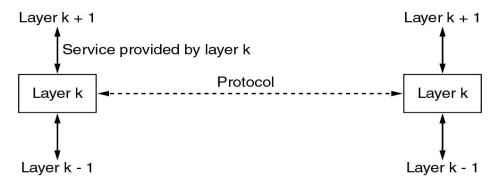
• Evolution

- PRNET (packet radio network) : the first MANET
 - Sponsored by DoD (Department of Defense), launchened in 1972
 - Evolved into survivable adaptive radio networks (SURAN) in 1980s
 - Goal: provide packet-switched networking to mobile battlefield elements in an infrastructureless, hostile environment.
 - MAC layer: combination of ALOHA and CSMA (carrier sensing multiple access)
 - Network layer: a variation of distance vector routing.
 - Handled datagram traffic reasonably well.
- Ad-hoc mode of IEEE 802.11: 1990s
- NTDR (Near-term digital radio): sponsored by DoD
 - Used by U.S. Army in late 2002
 - Clustering, link-state routing, self-organized two-tier structure.
- Still largely an R&D activity
 - IETF MANET workgroup: two protocols will become "proposed standards"

OUTLINE

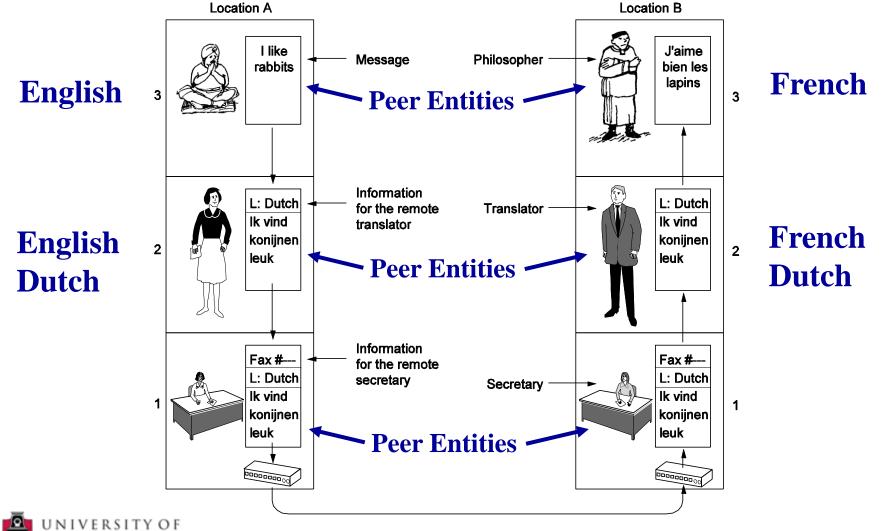
- Ad hoc wireless networks
- Protocol layers
- Cross-layer design

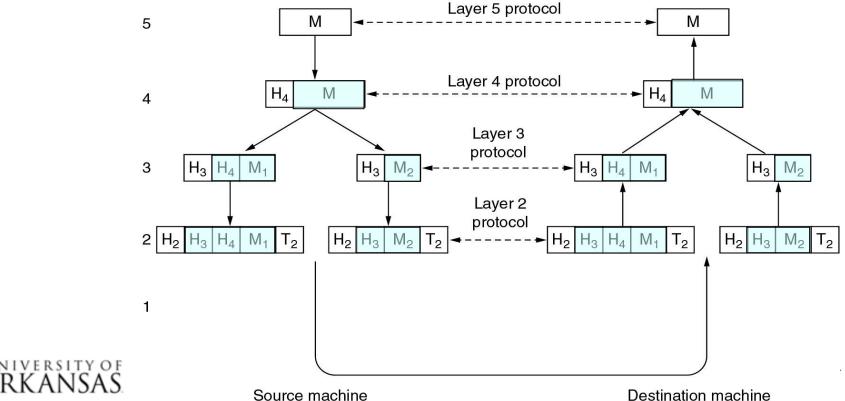
- Network software is organized as a stack of layers
 - Modular architecture makes development easier and cheaper

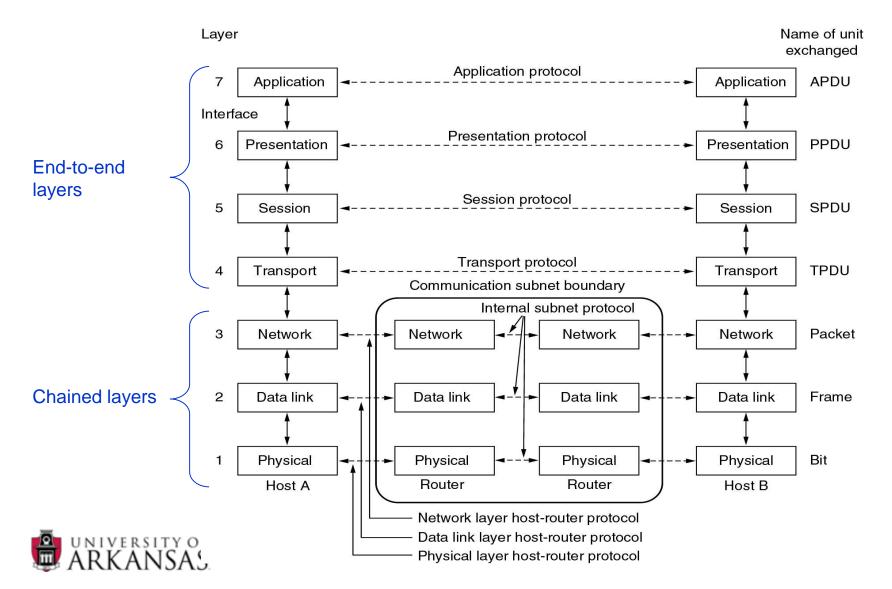

• Layered structure: vertical

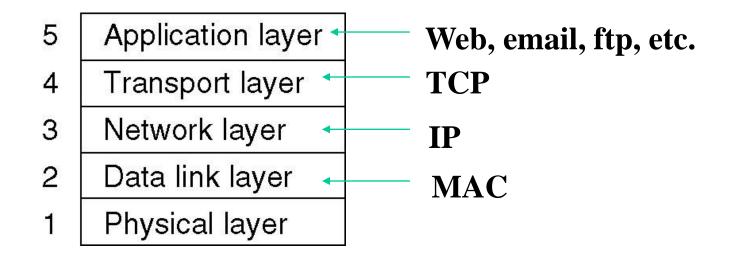
- Each layer provides services to the layers above
 - Via the interface between layers.
 - Details of the implementation of each layer is hidden to the higher layers → Data Encapsulation.
- Between each adjacent pair of layers is an interface
 - Interface clearly defines the services the lower layer makes available to the upper layer.
 - Clear cut interface make it simpler to change layer implementation → different host can use different implementation.
- A layer in a machine is represented by an entity in that machine.
 - Entity (SW or HW) does the function of that layer.

• Layered structure: horizontal


- Peer Entities
 - Entities in the same layer, but in different machines.
 - Layer *n* on one machine carries on conversation (exchanges information) with layer *n* on another machine.
 - Peer entities communicate with each other using protocol.
- Protocol: An agreement between communication parties on how communication is to proceed.
 - One of the most important concepts in computer network!
 - Each layer has its own protocol.
 - The protocol of a certain layer can only be understood by its peer entities.
- Physically, peer entities do not talk with each other directly.
 - Using the layers below them until the physical medium.
 - Actual communication occurs through physical medium


9


• The philosopher-translator-secretary architecture


- Protocol Stack: A list of protocols used by a certain system, one protocol per layer.
- Protocol Data Unit (PDU):
 - A unit of data that is specified by a protocol of a given layer and delivered among peer entities.
 - Consisting protocol control information of given layer and possibly data of that layer. Layer

• Open System Interconnect (OSI) model

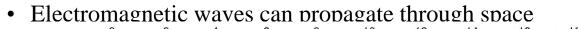
• A simplified model

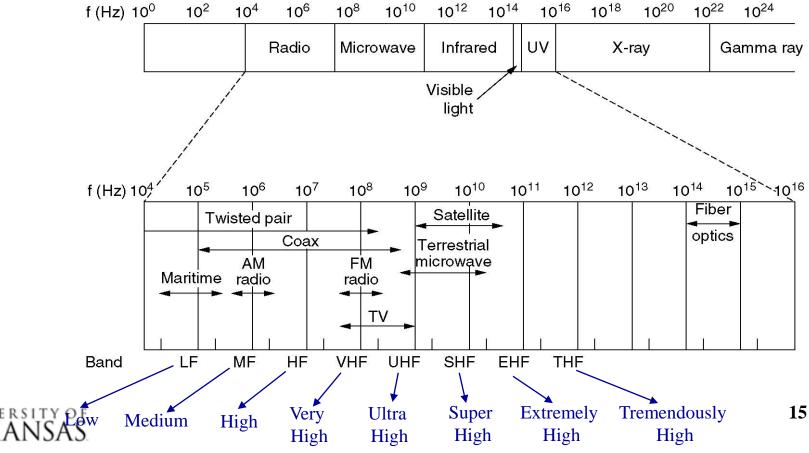
PHYSICAL LAYER

• Physical layer is responsible for

- Transmitting information over the physical medium
 - Make sure that when a '1' is sent out at Tx, a '1' is received at Rx.
- Activation and deactivation of physical connections.

• Physical layer specifies interface characteristics

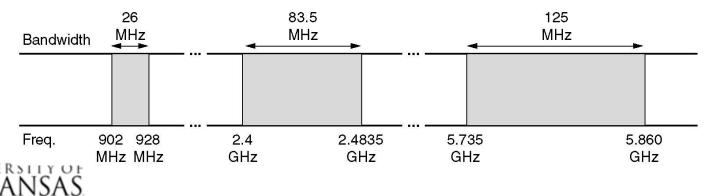

- Mechanical interface.
 - E.g. number of pins of the connector, the shape of the connector, etc.
- Electrical interface.
 - E.g. volts used to represent '1', how long should a bit last, etc.
- Procedural interface.
 - E.g. the sequence of events to activate/deactivate a physical medium.
- Example physical layer standards
 - RS-232, V.92, X.21



PHYSICAL LAYER

• Unguided transmission media

- Electromagnetic Waves
 - Change of electrical field causes change of magnetic field, and vice versa



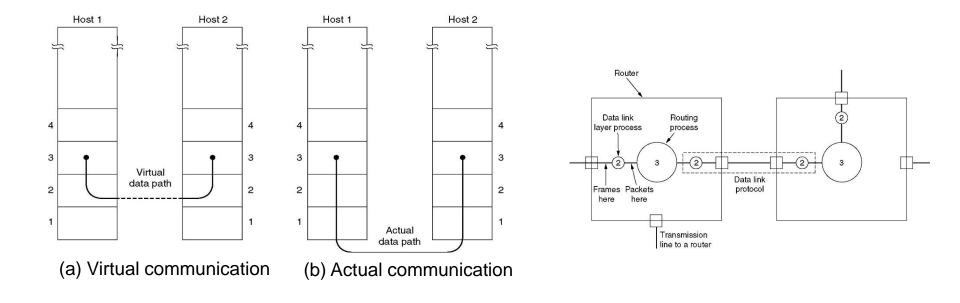
PHYSICAL LAYER

Spectrum Allocation

- Worldwide, ITU-R coordinates the allocation of spectrum
 - One device can be used in multiple countries
- In U.S., FCC (Federal Communication Commission) is in charge of the spectrum allocation.
- Spectrum Allocation Algorithms
 - Beauty Contest: Each carrier explains why its proposal serves public best.
 - Lottery: Lottery is held among interested companies
 - Auctions: Certain bandwidth is given to the highest bidder.
- ISM (Industrial, Scientific, Medical) bands
 - Allocated by government for unlicensed use (device power must be under 1watt to avoid interference)
 - Bluetooth, WiFi, cordless phone, etc.

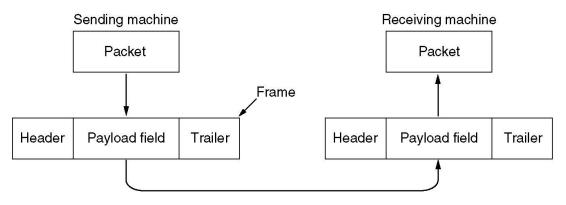
• Link layer

- Deals with reliable communication between adjacent machines.
- The channel acts as a wire \rightarrow no switching or routing


• Functions of data link layer

- Providing well-defined service interface to the network layer
- Framing
 - Encapsulates packets from network layer to frames.
- Flow control
 - Keep fast transmitter from swamping slow receiver
- Dealing with transmission errors
 - Error detection
 - Error correction
- Media access control (MAC)
 - Determine how to allocate a single broadcast channel (multi access channel) among multiple competing users

• Services to upper layer


- The entity in data link layer is usually a software (might be embedded in a chip)
- One router might have multiple different data link layers
 - E.g. connecting both wireless network and wired network

• Framing

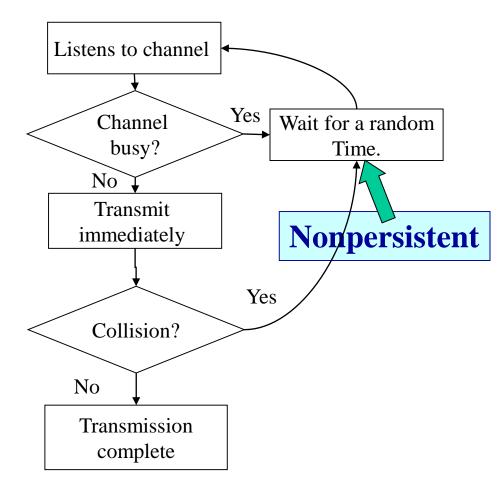
- Encapsulate packet from network layer to frame
 - Breaks down larger packets
 - Add header and trailer

- Break raw bit streams from physical layer into streams
 - Process each stream individually

- Flow Control
 - Keep high speed Tx from swamping low speed Rx
 - Feedback-based flow control
 - Rx sends back information giving it permission to send more data.

Error Control

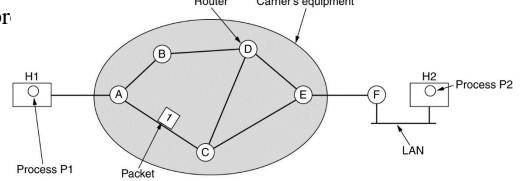
- Acknowledgement (Ack)
 - Positive Ack: Tx successful. Negative Ack: Tx unsuccessful.
 - Timer used at $Tx \rightarrow no$ Ack before timer expired = negative Ack.
 - If Ack is lost, Rx will have multiple copies of same frame
 - Sequence # is used to ensure no duplication and loss.
- Error detection and correction code
 - Cyclic redundancy check (CRC)


• Media access control (MAC)

- Determine how to allocate a single broadcast channel (multiaccess channel) among multiple competing users
- Collision: Two devices transmit simultaneously, they overlap in time and collision occurs
- MAC classifications
 - Static channel allocation
 - E.g. frequency division multiple access (FDMA): statically allocate a portion of the bandwidth to each user (broadcast TV)
 - E.g. time division multiple access (TDMA): divide time into slots, and allocate different slots to different users (cell phone systems)
 - dynamic channel allocation
 - Dynamically allocate channel to competing users.
 - Efficient for bursty traffics: data coming in irregularly.
 - Most widely used in LANs

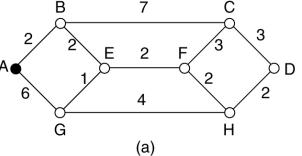
• MAC example: CSMA

- Carrier sensing multiple access
- Before sending out data, hosts listen to the carrier to see if there is transmission in the channel.
- If there is transmission, host will back off.
- If there is no transmission, host will act differently for different CSMA protocols



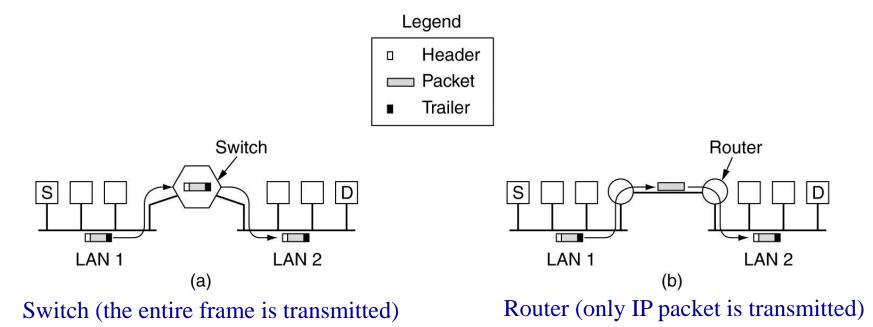
NETWORK LAYER

- Functions: getting packets from the source to the destination.
 - Routing
 - choose appropriate path for a packet; knowledge of the topology.
 - Internetworking
 - connect different types of networks (cooper, fiber optic, wireless, etc.).
 - Quality of Service
 - Congestion Control
 - avoid overloading some of the lines.
 - Service to transport layer
 - Connectionless service
 - Connection oriented service (virtual circuit service)
 - Transport layer should be shielded from the number. type. and topology of the routers pr


Routers can be in either subnet (owned by operator) or LAN (owned by end users).

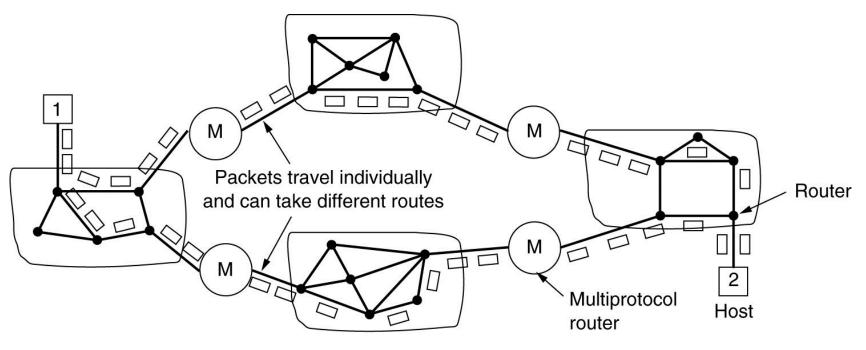
NETWORK LAYER

• Routing


- Deciding which output line an incoming packet should be forwarded to.
- Datagram routing (connectionless):
 - routing is performed for every packet.
 - A packet is called a datagram
- Virtual circuit routing (connection oriented)
 - routing is only performed at connection setup \rightarrow session routing.
 - All packets of the same session following the same route
- Shortest path: find out the route with the shortest "distance" between source and destination.
 - Different measures can be used to measure "distance"
 - E.g. # of hops, physical distance (km), queuing delay ...
 - In practical system, the "distance" measure is usually a function of the distance, bandwidth, average traffic, communication cost, mean queue length, delay, and other factors. B = 7 C

INTERNETWORK: CONNECTION

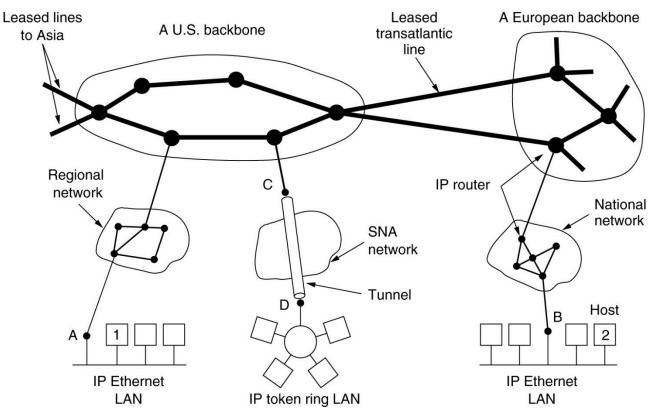
- Internetworking: how networks can be connected
 - Physical layer: repeater, Hub
 - Data Link layer: switch, bridge
 - Network layer: router (gateway: multi-protocol router)
 - Transport layer: transport gateway
 - Application layer: application gateway

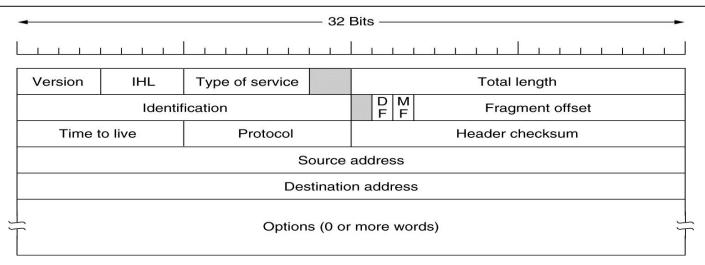


ARKANSAS

INTERNETWORK: CONNECTIONLESS INTERNETWORK

Connectionless Internetwork


- Packets might go through different paths.
- Protocol translation.
- Address mapping
- IP packet is a "universal" packet recognized by most networks.


NETWORK LAYER IN INTERNET

- Internet Protocol (IP) is the glue for Internet
 - IP was designed with internetworking in mind.
 - It provides best-efforts (not guaranteed) way to transmit datagram from source to destination.

INTERNET: IP PROTOCOL

- Version: the version of the protocol (IPv4, IPv6)
- IHL (4 bits): header length (in the unit of 32-bit word, or 4-byte word).
 - Min value = 5 \rightarrow 5 x 4 = 20 bytes. Max value = 15 \rightarrow 15 x 4 = 60 bytes.
- Type of service (6 bits): used to distinguish different service classes (QoS).
 - Differentiated services: 4 queuing priorities, 3 discard probabilities, etc.
 - This field has been ignored by routers.
- Total length (16 bits): the total length of the IP packet (including header and data)
 - Maximum length: $2^{16} = 65536$ bytes = 64KB

INTERNET: IP PROTOCOL

- Identification (16 bits): identify which datagram a fragment belongs to.
 - Fragments belonging to the same datagram has the same ID field.
- DF: Don't fragment.
- MF: More fragment. More fragments are following.
 - All fragments except the last one have this bit set to 1.
- Fragment Offset (13 bits): the seq. # of the first elementary fragment in the current fragment. Elementary fragment: 8 bytes.
 - $2^{13} = 8192$ elementary fragments. $\rightarrow 8192 \times 8 = 65536$ bytes.
- Time to live (8 bits): decrease by 1 after each hop.
 - When hits 0, packet is discarded and a warning is sent back to source.
- Protocol: which protocol is on the transport layer (TCP, UDP, etc.)
- Header checksum: check header only. MUST be recomputed at each router! Why?
- Source address (32 bits): IP address of source.
- Destination address (32 bits): IP address of destination.

INTERNET: IP PROTOCOL

- Option: variable length. Can contain many options
 - Each option starts with 1 byte word to identify the option
 - Some options

Option	Description
Security	Specifies how secret the datagram is
Strict source routing	Gives the complete path to be followed
Loose source routing	Gives a list of routers not to be missed
Record route	Makes each router append its IP address
Timestamp	Makes each router append its address and timestamp

• More options can be found at

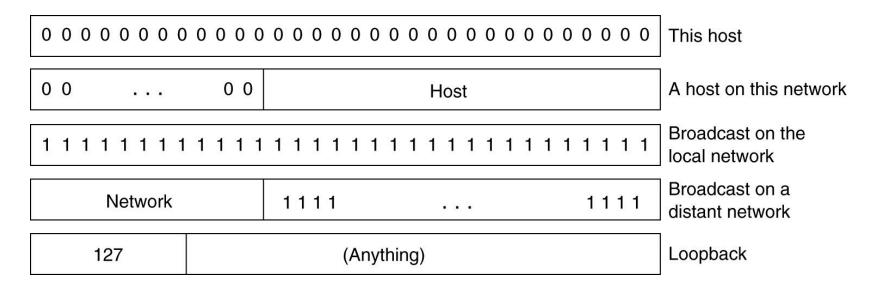
www.iana.org/assignments/ip-parameters

• IP address: 32-bit

- $-2^{32} = 4295$ million addresses.
- Format: dotted decimal.
 - Binary: 11000000.00101001.00000110.00010100
 - Hexadecimal: C0.29.06.14
 - Hexadecimal:Binary

0: 0000;	1:0001;	2:0010;	3: 0011
4: 0100;	5:0101;	6: 0110;	7:0111
8: 1000;	9: 1001;	A: 1010;	B: 1011

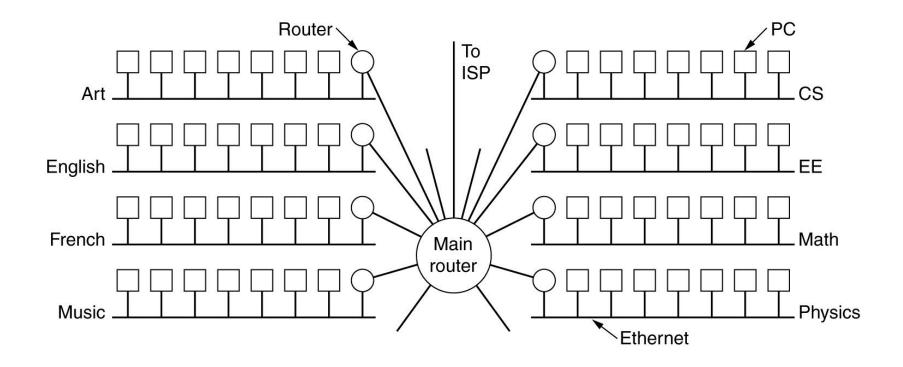
- C: 1100; D: 1101; E: 1110; F: 1111
- Decimal: 192.41.6.20
 - $12x16+0 = 192; 2 \times 16+9=41; 0 \times 16+6=6; 1 \times 16+4=20.$
- IP address assignment is managed by ICANN (Internet Corporation for Assigned Names and Numbers)


• IP addresses are divided into 5 classes

- 0.0.0.0: this host
- 255.255.255: broadcast

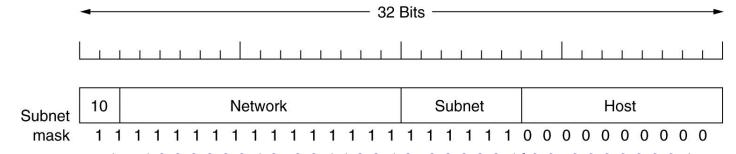
	•		32 E	Bits —				
Class		I I I I			1111111	Range of host addresses	_	128 networks with 16
A	0 Ne	twork		Host		1.0.0.0 to 127.255.255.255		million hosts
В	10	Ne	etwork	Но	st	128.0.0.0 to 191.255.255.255	-	16384 networks with 64K hosts.
С	110		Network		Host	192.0.0.0 to 223.255.255.255	_	2 million networks with 256 hosts.
D	1110		Multic	cast address		224.0.0.0 to 239.255.255.255	_	Multicast
Е	1111		Reserve	d for future use		240.0.0.0 to 255.255.255.255	_	Reserved

• Special IP addresses



- Loopback: for testing only.
 - Packets sent to this address will not be put in the wire.
 - They are going to be processed locally as incoming packets.

• Subnet

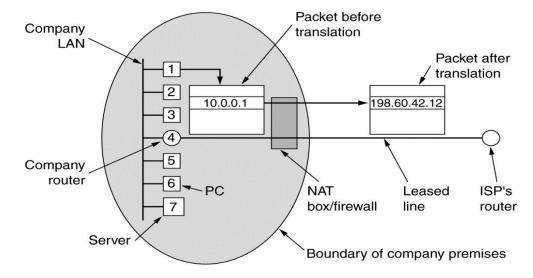

- Allow a single network be split into small parts for internal use but still act like a single network to the outside.
 - E.g. Each LAN within the network is a subnet.

• Subnet (Cont'd)

- Some bits of the host number are used to identify subnet.
 - E.g. in a class B network, 16-bits are used to identify hosts in the network. Among the 16-bit, 6 bits are used for subnet # (64 Ethernets), 10 bits are used for host # (1022 hosts in each subnet).
 - Subnet mask: 1111111111111111111100.00000000 (255.255.252.0, or 130.157.23.16.0/22)
 - 22 bits are used for network # and subnet #; 10 bits are used for host #
- Router in the network can route packet based on the subnet #.

E.g: subnet 1: 100000010 00110010 000001|00 00000001 subnet 2: 100000010 00110010 000010|00 00000001

Each IP contains three fields: network address, subnet address, host address



• NAT (Network Address Translation)

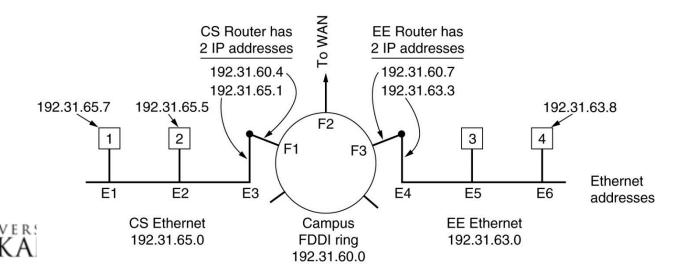
- Motivation: Most users want static IP address → We are running out of IP addresses!
- Solution: Assign 1 or a few IP to company or ISP; Private IP are used inside company or ISP; NAT is used for address translation!
 - Private IP address ranges

10.0.0.0	- 10.255.255.255/8 (16,777.216 hosts)
172.16.0.0	- 172.31.255.255/12 (1,048,576 hosts)
192.168.0.0	- 192.168.255.255/16 (65,536 hosts)

• Packets leaving local network will be replaced with true IP address.

INTERNET: IP ADDRESS

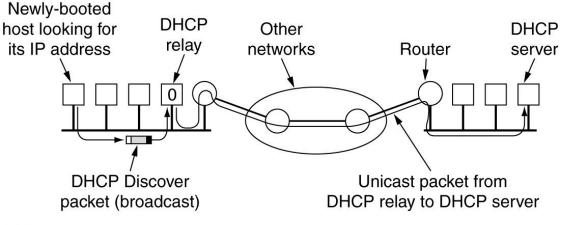
• NAT (Cont'd)


- All incoming packets are addressed to the real IP of the network.
 - How to distinguish incoming packets for different hosts?
- TCP (or UDP) has header fields for source port and dest. port.
 - Each port corresponding to one of the processes in host.
 - E.g. port 80: http; port 21: ftp;
- NAT uses TCP source port to distinguish hosts!
 - Each host is assigned a unique TCP port # at NAT.
 - NAT maintains a table (host # and original port # v.s. NAT mapping port #)
 - When a packet is sent to NAT from the private network
 - its IP address is replaced by real IP address;
 - its TCP src port is changed to the NAT port based on (host # and original TCP port #).

INTERNET: INTERNET CONTROL PROTOCOLS

• Address Resolution Protocol (ARP)

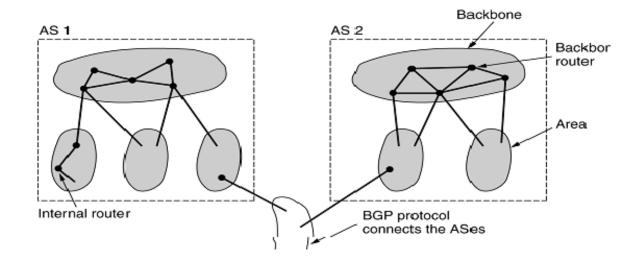
- How to find Ethernet address (MAC) by IP address?
- E1 to E2: Host 1 broadcasts an ARP packet asking: what is the MAC address for 192.31.65.5?
 - Host 2 answers with its own MAC address.
 - All the hosts make an entry in their own (IP, MAC) mapping table for host 1 and 2.
- E1 to E4: Host 1 sends the packet with dest. MAC address being F1 (or broadcast).
 - F1 builds a new MAC frame to F3
 - F3 builds a new MAC frame asking about the MAC address of E4


INTERNET: INTERNET CONTROL PROTOCOLS

- RARP (Reverse Address Resolution Protocol)
 - A newly booted host broadcast its MAC address, and asking for IP address.
 - RARP server replies with the IP by looking the MAC in its table.
 - Router won't forward MAC broadcast message (dest: all '1's).
 - Each network needs an RARP server.
- BOOTP
 - A newly booted host broadcast its MAC address using UDP messages
 - UDP message can be forwarded by routers
 - BOOTP server will reply with IP and other information
 - E.g. the IP address of file server to download Operating System image.
 - The MAC/IP mapping table must be configured by hand.

INTERNET: INTERNET CONTROL PROTOCOLS

- DHCP (Dynamic Host Configuration Protocol)
 - A newly-booted host broadcasts a DHCP DISCOVER packet.
 - Each LAN has a DHCP relay agent
 - Forward the message to DHCP server through unicast.
 - The DHCP server might not be reachable through broadcasting.
 - DHCP server automatically assigns an IP address to the host.
 - Leasing: IP is assigned for that host for a period of time.
 - Host must renewal before expiration.



INTERNET: OSPF

• OSPF (Open Shortest Path First) – RFC 2328

- An interior gateway (multi-protocol router) routing protocol: routing inside an independent network (autonomous system, or AS).
- AS is divided into areas: a network or a set of contiguous networks.
 - Each AS has a backbone area connected to all other areas.
 - Router connecting to two or more areas is part of backbone.
- Four types of routers:
 - internal routers, area border router, backbone router, AS boundary router

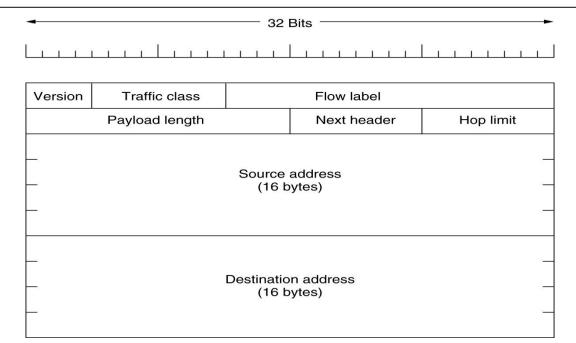
INTERNET: BGP

• BGP (Border Gateway Protocol)

- An exterior gateway routing protocol: routing between ASes.
- The major difference from interior gateway routing: need to consider politics
 - E.g. Do not use United States for traffic from British Columbia to Ontario; Traffic starting at IBM should not pass Microsoft; Transit traffic of only paid customers, etc.
- The rules are manually configured in BGP routers.
- BGP used an enhanced distance vector protocol
 - Exchanging information with neighbors about cost to all destinations.

INTERNET: IPV6

• IPv6: the evolution of IP


- 16 bytes of addresses: support effectively unlimited addresses.

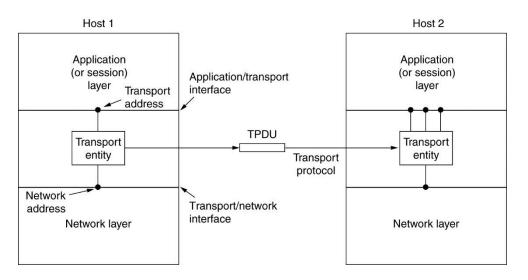
$$2^{16\times8} = 3.4 \times 10^{38}$$

- For the entire earth (water & land), allow 7×10^{23} per square meter!
- Header is simplifier compared with IPv4
 - Fixed length: 40 bytes
 - Packets can be processed faster in router \rightarrow lower delay, larger throughput.
- Better support of options
 - Many required fields in IPv4 become options in IPv6
- Better security
- Better support of QoS.
- Not compatible with IPv4, but compatible with most other protocols
 - TCP, UDP, ICMP, IGMP, OSPF, BGP, DNS

INTERNET: IPV6 MAIN HEADER

- Version: 6
- Traffic class: different service classes for QoS
- Flow label: the label of a particular connection. Routers can use this field for QoS purpose. (e.g., this flow is delay sensitive).
 - Each flow is designated by source, destination, and flow #.

INTERNET: IPV6 MAIN HEADER


• Main Header (Cont'd)

- Payload length: how many bytes following the 40-byte header
- Next header: which of the 6 optional header is following the main header.
 - If no optional header, tells which transport protocol to pass the packet to.
- Hop limit: same as Time to live in IPv4.
- IPv6 address notation: eight groups of four hexadecimal digits 8000:0000:0000:0123:4567:89AB:CDEF
 - Can be simplified as 8000::123:4567:89AB:CDEF
 - Consecutive zeros are replaced by ::
 - Leading 0s are omitted.

TRANSPORT LAYER

- Functions: provide reliable, cost-effective data transport from source to destination.
 - Independent of the physical network
 - Independent of the network structure & topology
 - The first true end-to-end layer
 - Transport layer does not exist on routers.
 - Transport layer on the source is directly talking with transport layer on the destination.
 - On other layers, e.g. network layer, the conversation is usually between intermediate neighbors.

TRANSPORT LAYER

Connection-oriented service

- Three phases:
 - Connection establishment
 - Data transfer
 - Connection release
- Packets belonging to the same connection might take different routes!
 - If the underlying network layer is connectionless.
- Example: TCP (Transport Control Protocol)

• Connectionless service

- No connection required
- E.g. UDP (User Datagram protocol)
- Could be on top of connection-oriented network layer

TRANSPORT LAYER: WHY TRANSPORT LAYER?

- Network layer providing connectionless and connection oriented services as well.
 - Why do we need another layer?
- Network layer mainly resides on routers
 - Routers are owned by operators
 - Users have no control about the operation of the network layer.
 - If something goes wrong in the network, the users could do nothing to stop it.
- We need an addition layer on top of network layer to improve the QoS.
 - If error happens in network, simply set up another connection.
 - Lost data can be detected and compensated by transport layer.
 - Provide a unified interface to users
 - Application programmers do not need to worry about the underlying network

TRANSPORT LAYER: SERVICE PRIMITIVES

• Service primitives

- A set of interfaces for the user to access the service
- Usually in the form of function calls.
- Analogy: printf() is the service primitive for the format printing service provided by C language.
 - Users do not need to know the implementation of the function.
- Different transport layer protocols have different service primitives

TRANSPORT LAYER: SERVICE PRIMITIVES

• A simple example

Primitive	Packet sent	Meaning		
LISTEN	(none)	Block until some process tries to connect		
CONNECT	CONNECTION REQ.	Actively attempt to establish a connection		
SEND	DATA	Send information		
RECEIVE	(none)	Block until a DATA packet arrives		
DISCONNECT	DISCONNECTION REQ.	This side wants to release the connection		

• The service primitives shield the underlying implementations from users

- Acknowledgement, lost packets, congestion, etc. are invisible to users.
- Provide reliable service on top of unreliable networks
- All users need to do is call SEND to send a packet at source, and call RECEIVE at destination to retrieve the packet.
- Used directly by programmers or users
 - Usually are convenient and easy to use.

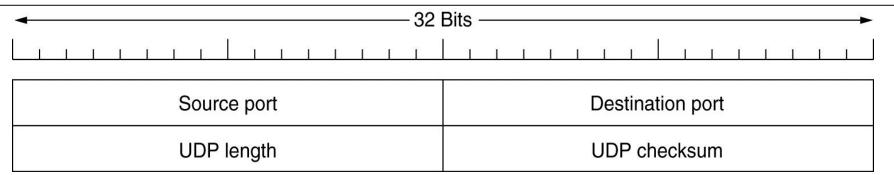
TRANSPORT LAYER: BERKELEY SOCKETS

• Berleley sockets

- Socket: access point for the service in transport layer.
- Servives primitives used in Berkeley Unix for TCP.
- Part of the OS kernel.
- The most widely used service primitives for TCP.

Primitive	Meaning		
SOCKET	Create a new communication end point		
BIND	Attach a local address to a socket		
LISTEN	Announce willingness to accept connections; give queue size		
ACCEPT	Block the caller until a connection attempt arrives		
CONNECT	Actively attempt to establish a connection		
SEND	Send some data over the connection		
RECEIVE	Receive some data from the connection		
CLOSE	Release the connection		

In Linux or Unix system, use man command_name (e.g. man socket) to get more information.


TRANSPORT LAYER: UDP

• User datagram protocol (UDP) – RFC 768

- Connectionless protocol
- Simple: IP with a short header
- Fewer message required (no connection setup, acknowledgement).
- Example: DNS (Domain Name System)
 - Client send a request contains a domain name
 - DNS server replies the IP of the domain name
 - Only two messages.
- Good for short transaction, or delay sensitive applications.
- Why UDP? Why not use IP directly?
 - Each host has only one IP address
 - Multiple network applications are running simultaneously.
 - One UDP entity can provide services to multiple users.
 - Each user has it's own TCP port #.
 - We can easily identify the destination application by using
 - (IP, UDP port #)

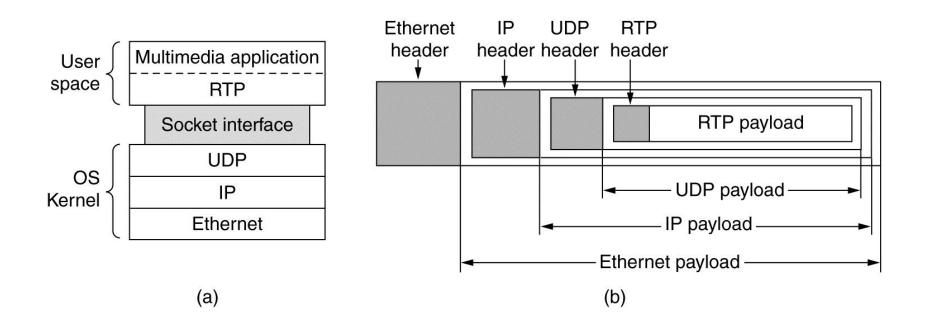
We want to use the addressing element of UDP.

• Header

- Source port: port # of source
- Destination port: port # of destination
- Length: the length of the entire UDP packet (head + payload).
- Checksum: optional. All 0s if not computed.

• What the UDP does not do

- Flow control
- Acknowledgement
- Retransmission (retransmission is meaningless for real-time application)


These operations are left to the applications!

UDP: REAL-TIME TRANSPORT PROTOCOL

• Real-time transport protocol (RTP)

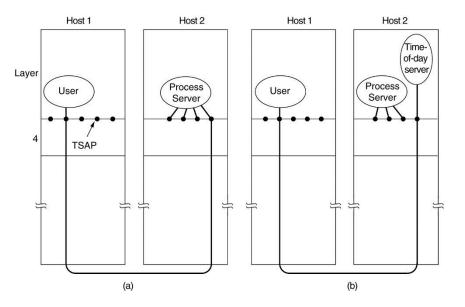
- The engine for real-time applications
 - Internet telephony, videoconferencing, video-on-demand, etc.

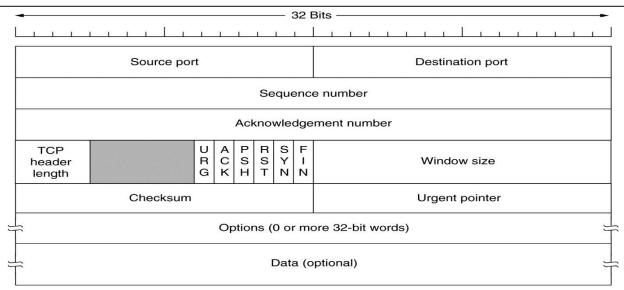
TCP: SERVICES

• Transmission control protocol – RFC 793, 1122, 1323

- Reliable end-to-end byte stream over an unreliable internetwork
 - IP gives no guarantee of the delivery of datagram
 - It's up to TCP to guarantee the in-order and reliable delivery of the data to application layer.

• TCP service model


- Application access the services provided by TCP by creating sockets at both communication parties.
 - Each socket is associated with a unique port number.
- Connections are established between sockets.
 - One socket might be used for multiple connections.
 - E.g. several users can connect to the same FTP server simultaneously.
- Byte stream: all bytes are treated equally.
- Full duplex: data transmissions can occur at both directions simultaneously.


TCP: SERVICES

• Daemon

- Server programs runs at background
 - FTP daemon is associated with port 21
- Internet daemon (inetd)
 - Attached to multiple ports and waiting for connection requests.
 - When a connection request for a particular application comes in, inetd will fork of a new process and wake up the corresponding service daemon.

- Source port, destination port
 - 16-bit:
 - Specify the sockets on source and destination.
- Sequence number:
 - For a particular connection, each byte has its own sequence number
 - The sequence number of the first byte in the payload
- Acknowledge number: (Used in combination with the ACK flag)
 - All bytes (0, Ack# 1) have been successfully received
 - The next expected byte is Ack#.

- 32 Bits				
Source port		Destination port		
Sequence number				
Acknowledgement number				
TCP header length	U A P R S F R C S S Y I G K H T N N	Window size		
Checksum		Urgent pointer		
	Options (0 or mo	pre 32-bit words)		
Data (optional)				

- TCP header length (in the unit of 32-bit word)
 - How many 32-bit words are in the TCP header.
 - Fixed header: 20 bytes. Optional header: variable length.
- URG: urgent flag, used in combination with urgent flag
 - If set to 1, indicating the urgent pointer is in use
- Urgent pointer: (relative offset from the seq#)
 - pointing to a byte in the payload starting from which the data is urgent
 - TCP will be notified by application which data is urgent
 - E.g. telnet, ctrl+C to terminate an application.
 - If the data is urgent, TCP cannot hold it in buffer. Must deliver it immediately even if the sender window is 0.

- 32 Bits				
Source port	Destination port			
Sequence number				
Acknowledgement number				
TCP header lengthUAPRSFGKHTNN	Window size			
Checksum	Urgent pointer			
Options (0 or more 32-bit words)				
Data (optional)				

- Ack: when set to 1, the Ack# is valid. Otherwise Ack# will be ignored.
- PSH: PUSH flag
 - When set to 1, notify TCP entity to send out data immediately.
 - E.g. in remote login, hit enter.
- RST:
 - when set to 1, reset a connection (due to crash or other reasons).
 - Also used to reject invalid TCP packets (e.g. delayed duplicate).
- SYN: used for connection establishment
 - Connection request: SYN = 1, ACK = 0.
 - Connection accept: SYN = 1, ACK = 1.

CES440: Introduction Jingxian Wu, 8/16/2005

- 32 Bits					
Source port		Destination port			
	Sequence number				
Acknowledgement number					
TCP header length	U A P R S F R C S S Y I G K H T N N	Window size			
	Checksum	Urgent pointer			
Options (0 or more 32-bit words)					
Data (optional)					

- FIN: set to 1 used for connection release.
 - After sending out a packet with FIN = 1, the host will no longer transmit more data. (but will continue receive data)
- Window size: used for flow control

- Checksum
 - checks TCP header, data, and part of the IP header (source IP, dest. IP, protocol (6), TCP packet length) → violate the layered structure
 - Other than TCP header, the following fields are checked.

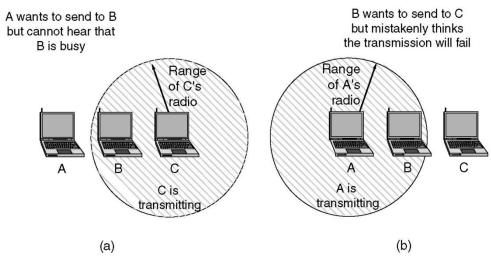
•	32 Bits			•	
Source address					
Destination address					
00000000	Protocol = 6	Т	CP segment length		

TCP: CONNECTION ESTABLISHMENT

• Service primitives

- Server: LISTEN, ACCEPT
- Client: CONNECT
- Three-way handshake
 - After CONNECT is called, a connection request packet will be generated.
 - Connection request packet (SYN = 1, ACK =0, Seq# = x).
 - When the connection request packet arrives at the receiver, the receiver checks if LISTEN and ACCEPT have been executed for the port.
 - If server accepts request, send back Ack (SYN = 1, ACK=1, Ack# = x+1, Seq# = y)
 - Client sends back an Ack (SYN=0, ACK=1, Ack#=y+1) to finish the three way handshake.
 - If server rejects request, send back Rej (RST = 1, ACK = 1, Ack#=x+1)
 - The initial sequence# (x, y) are assigned based on the clock at the hosts.

APPLICATION LAYER


- The applications directly used by the end users
- Examples
 - HTTP (Hyper Text Transfer Protocol)
 - FTP (File Transfer Protocol)
 - E-mail

PROTOCOL: MAJOR CHALLENGES

• Major challenges

- Network layer: dynamic routing
 - Nodes are mobile
 - Distributed multihop wireless network with time-varying topology.
- MAC sublayer:
 - Hidden station problem
 - Exposed station problem
- Physical layer
 - Power consumption.
 - Unreliable wireless link

OUTLINE

- Ad hoc wireless networks
- Protocol layers
- Cross-layer design

CROSS-LAYER DESIGN

• Cross-layer design

- Perform joint optimization across protocol layers
- Why?
 - Layered structure works well for conventional wired networks
 - The isolation of layers doesn't work very well for wireless ad hoc network
 - Can't perform optimization across layers
 - The physical channel and the network structure is constantly changing → the layered structure might not be able to respond to the change fast enough

CROSS-LAYER DESIGN

• Example 1

- Physical layer: adaptive modulation and coding (AMC)
 - Select the modulation and coding based on the channel condition
- Network layer:
 - Adaptive routing: there might be multiple paths between source and destination. Select the path with the better physical layer performance.

• Example 2

- Hybrid Automatic Retransmit Request (HARQ)
 - In the MAC layer, if there is collision during transmission, re-transmit
 - Perform maximal ratio combining (MRC) between the originally transmitted signal and the re-tx signal at the physical layer.

• Example 3

- Cooperative diversity: multiple spatially distributed nodes to help the forward of a node
- Network diversity: multiple routes through the network are used to send a single packet

