Department of Electrical Engineering University of Arkansas

ELEG 5693 Wireless Communications Ch. 8 CDMA

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- CDMA Fundamentals
- Pseudo-noise sequence
- Rake receiver

FUNDAMENTALS

• Code Division Multiple Access (CDMA)

- Multiple users share the same channel and transmit at the same time.
- Different codes are used to separate the signals from different users.
- The signal occupies a bandwidth much larger than the minimum bandwidth necessary to send the information.
 - Spread Spectrum Technologies.

Classifications

- Direct sequence CDMA (DS-CDMA)
 - Also called Direct sequence spread spectrum (DSSS)
 - Used in IS-95, WCDMA, cdma2000, IEEE 802.11, etc.
 - The most commonly used CDMA technique.
- Frequency hopping CDMA (FH-CDMA)
 - Also called Frequency Hopping spread spectrum (FHSS)
 - Used in original IEEE 802.11, military applications, etc.

FUNDAMENTALS

• **Definitions**

- Inner product (correlation between two sequences):
 - The inner product of two length *N* vectors **a** and **b** is defined as

$$\mathbf{a} = [a_1, a_2, \dots, a_N] \qquad \mathbf{b} = [b_1, b_2, \dots, b_N] \\ \mathbf{a} \bullet \mathbf{b} = \frac{1}{N} (a_1 b_1 + a_2 b_2 + \dots + a_N b_N) = \frac{1}{N} \sum_{i=1}^N a_i b_i$$

• For binary vector **a** (contains either -1 or 1)

$$\mathbf{a} \bullet \mathbf{a} = \frac{1}{N} \sum_{n=1}^{N} (\pm 1)^2 = \frac{1}{N} \cdot N = 1$$

– Orthogonal:

• Two vectors are orthogonal if their inner product is 0.

 $\mathbf{a} \cdot \mathbf{b} = 0 \Rightarrow \mathbf{a}$ and \mathbf{b} are orthogonal

• Example

a = [1 -1 1 -1], b = [1 1 -1 -1]
a • **b** =
$$\frac{1}{4}(1-1-1+1)=0$$

FUNDAMENTALS: OPERATION

• CDMA operations: Transmitter

- Each user is assigned a unique code
 - Each bit in the code is called a "chip"
 - E.g. user 1, $\mathbf{c}_1 = [-1, -1, -1, +1, +1, -1, +1]$
- For each user, the modulation symbol *s* is further modulated by the code sequence as $S \times \mathbf{c}_i$ (spreading)
 - E.g. BPSK.
 - To transmit BPSK symbol '1', signal sent out by the user in one symbol period is

 $1 \times \mathbf{c}_1 = [-1, -1, -1, +1, +1, -1, +1, +1]$

 To transmit BPSK symbol '-1', signal sent out by user 1 in one symbol period is

 $-1 \times \mathbf{c}_1 = [+1,+1,+1,-1,-1,+1,-1,-1]$

- At each symbol period, instead of transmitting 1 symbol, *N* chips are transmitted
 - Chip period *Tc*: time duration of one chip
 - Symbol period $T_s = N \cdot T_c$

FUNDAMNETALS: OPERATIONS

• CDMA operations: receiver

- Despreading: at receiver, performing inner product between received signal and the code sequence of the user
 - Rx signal (after fading compensation)

$$\mathbf{y} = s \times \mathbf{c}_1 + \mathbf{n}$$

• After despreading:

$$\mathbf{y} \bullet \mathbf{c}_1 = s \times \mathbf{c}_1 \bullet \mathbf{c}_1 + \mathbf{n} \bullet \mathbf{c}_1 = s + z$$

- $z = \mathbf{n} \bullet \mathbf{c}_1$ is the noise component after despreading

- Example (Assume no noise)
 - The Rx sequence is

$$\mathbf{y} = [+1,+1,+1,-1,-1,+1,-1,-1]$$

- $\mathbf{c}_1 = [-1, -1, -1, +1, +1, -1, +1, +1]$
- After despreading:

$$\mathbf{y} \bullet \mathbf{c}_1 = \frac{1}{8}(-1 - 1 - 1 - 1 - 1 - 1 - 1) = -1$$

FUNDAMENTALS: OPERATIONS

• CDMA operations: multiple access

- Each user is assigned a unique sequence
 - Ideally, the sequences of different users are orthogonal to each other.
 - E.g user 1: $\mathbf{c}_1 = [-1, -1, -1, +1, +1, -1, +1, +1]$

• User 2:
$$\mathbf{c}_2 = [-1, -1, +1, -1, +1, +1, +1, -1]$$

 $\mathbf{c}_1 \cdot \mathbf{c}_2 = \frac{1}{8} (1 + 1 - 1 - 1 + 1 - 1 + 1 - 1) = 0$

- Signals from multiple users are transmitted at the same time and same bandwidth.
 - E.g. user 1 "1": $\mathbf{c}_1 = [-1, -1, -1, +1, +1, -1, +1, +1]$
 - User 2 "-1": $-\mathbf{c}_2 = [+1,+1,-1,+1,-1,-1,-1,+1]$
 - Signal at receiver: $\mathbf{r} = \mathbf{c}_1 \mathbf{c}_2 = [0, 0, -2, +2, 0, -2, 0, +2]$
- Detect signals from user 1

$$\mathbf{c}_1 \bullet \mathbf{r} = (0 + 0 + 2 + 2 + 0 + 2 + 0 + 2) / 8 = 1$$

- Detect signals from user 2

$$\mathbf{c}_2 \bullet \mathbf{r} = (0 + 0 - 2 - 2 + 0 - 2 + 0 - 2) / 8 = -1$$

FUNDAMENTALS: OPERATIONS

- Multiple access (Cont'd): why no interference among users? $\mathbf{c}_1 \bullet \mathbf{r} = \mathbf{c}_1 \bullet (\mathbf{c}_1 - \mathbf{c}_2) = \mathbf{c}_1 \bullet \mathbf{c}_1 - \mathbf{c}_1 \bullet \mathbf{c}_2 = \mathbf{c}_1 \bullet \mathbf{c}_1 = 1$ $\mathbf{c}_2 \bullet \mathbf{r} = \mathbf{c}_2 \bullet (\mathbf{c}_1 - \mathbf{c}_2) = \mathbf{c}_2 \bullet \mathbf{c}_1 - \mathbf{c}_2 \bullet \mathbf{c}_2 = -\mathbf{c}_2 \bullet \mathbf{c}_2 = -1$
 - Because the spreading codes are orthogonal with each other, there is no interference among users!
 - If there are *M* users

$$\mathbf{r} = \sum_{m=1}^{M} s_m \times \mathbf{c}_m + n$$

- To detect the signal of the *n*th user

$$\mathbf{r} \bullet \mathbf{c}_n = s_n \times (\mathbf{c}_n \bullet \mathbf{c}_n) + \sum_{m \neq n} s_m \times (\mathbf{c}_m \bullet \mathbf{c}_n) + \mathbf{n} \bullet \mathbf{c}_n = s_n + z_n$$

noise after despreader

- To guarantee the orthogonality among users, all the M users must be synchronized.
 - All users in system must transmit at exactly the same time!
 - This requirement can be lowered by using PN code.

FUNDAMNETALS: PN CODE

- PN Code (Pseudo-noise Code)
 - Binary sequence with random properties \rightarrow noise like
 - Approximately the same number of 0s and 1s.
 - Very low correlation between time-shifted version of same sequence
 - Auto-correlation of PN code → noise like!

- E.g. [-1, -1, -1, +1, +1, -1, +1], time shift by 1: [+1, -1, -1, -1, +1, +1, -1]
 Inner product: (-1+1+1-1+1-1)/7 = -1/7
- Very low cross-correlation between different codes.

FUNDAMNETALS: MAI

- Multiple access interference (MAI)
 - In practical CDMA systems
 - Users are not perfectly synchronized → codes are time shifted → codes are no longer orthogonal
 - The spreading codes among users are not perfectly orthogonal
 - MAI: interference among users in CDMA system because the codes among users are not perfectly orthogonal.

$$\mathbf{r} = \sum_{m=1}^{M} s_m \times \mathbf{c}_m + \mathbf{n}$$

- To detect the signal of the *n*th user

$$\mathbf{r} \bullet \mathbf{c}_n = s_n \times (\mathbf{c}_n \bullet \mathbf{c}_n) + \sum_{m \neq n} s_m \times (\mathbf{c}_m \bullet \mathbf{c}_n) + \mathbf{n} \bullet \mathbf{c}_n$$
$$= s_n + \sum_{m \neq n} I_m + z_n$$
MAI

- Usually:
$$\mathbf{c}_m \bullet \mathbf{c}_n << \mathbf{c}_n \bullet \mathbf{c}_n = 1$$

therefore $E \left| \sum_{m \neq n} I_m \right|^2 << E |s_n|^2$

FUNDAMENTALS: MAI

• MAI (Cont'd)

- The power of MAI depends on two factors:
 - the cross-correlation between different PN codes
 - The signal power of interfering users
- Near-far effect
 - Interfering users are close to BS ("near") \rightarrow high power at Rx
 - Desired user is far away from BS ("far") \rightarrow low power at Rx
 - the power of the interfering users is much higher than the power of the desired signal → MAI is high → signal to MAI ratio is low → poor performance of desired user
 - Near-far effect will seriously affect the performance of CDMA system
 - To reduce the impairments of near-far effect, the power at Rx should be the same for all users
 - Close to BS: low Tx power. Far from BS: larger Tx power
 - Power control is very important for CDMA system.

FUNDAMENTALS: SPREAD SPRECTRUM

• Bandwidth of CDMA signals

- TDMA or FDMA system: one symbol is transmitted at one symbol period (Ts)
 - Each symbol passes through pulse shaping filter with parameter (α, T_s)
 - Bandwidth: $BW = (1+\alpha)R_s = (1+\alpha)/T_s$
- CDMA system: N chips are transmitted at one symbol period (*Ts*)
 - each chip passes through pulse shaping filter with parameter (α, T_c)
 - Bandwidth: $BW = (1+\alpha)R_c = (1+\alpha)/T_c$
 - $R_c = NR_s$: chip rate
 - The bandwidth is proportional to chip rate (N times of symbol rate)
 - The bandwidth of the signal is spreaded N times \rightarrow spread spectrum!
 - Within one symbol period, signals changes N times faster due to spreading code.
 - Due to the properties of PN code, signals look like noise \rightarrow high security

FUNDAMENTALS: SPREAD SPRECTRUM

• Bandwidth of CDMA signals (Cont'd)

FUNDAMENTALS: SPREAD SPECTRUM

• Bandwidth after despread

- − After the operation of despread, each symbol period there is only one symbol \rightarrow BW $\propto 1 / Ts$
 - The bandwidth of the original signal is recovered after despread.

- How about noise and signals from other users?
 - Signals from other users: they use different codes → cross-correlation is low → they remain to be wideband interference (MAI)
 - Noise: noise inner product with PN code → noise properties remain the same.

FUNDAMENTALS: PROCESSING GAIN

• Processing gain

- At receiver, perform inner product between narrow band interference and PN code
 - Equivalent to perform spreading operation over interference
- Interference is spreaded, while signal is recovered !
 - Interference: BW $\propto 1 / Tc$
 - Signal: BW $\propto 1 / Ts$
 - Most of the interference are removed!

FUNDAMENTALS: PROCESSING GAIN

• Process gain (Cont'd)

Processing gain is an approximate measure of the interference rejection capability

$$PG = \frac{R_c}{R_s} = \frac{T_s}{T_c} = N$$

- Process gain is equal to the number of chips per code.
- The higher the processing gain, the greater the ability to suppress narrow band interference.

FUNDAMENTALS: FHSS

• Frequency-hopping spectrum

- A wide spectrum is divided into N sub-channels
- At each chip period, the carrier frequency of the signal is in one subchannel
 - At next chip period, the carrier frequency of the signal is in another sub-channel
 - The signal "hops" from frequency to frequency
 - The signal itself is still narrow band.
- At each symbol period, the signal hops N times
 - The order of hopping is determined by the PN code.
- Very good security
 - It's hard to guess which sub-channel the signal is at without the knowledge of the PN code
 - Usually used in military applications.

OUTLINE

- CDMA Fundamentals
- Pseudo-noise sequence
- Rake receiver

PSEUDO-NOISE SEQUENCE

• PN sequence

- A binary sequence with an autocorrelation resembles the autocorrelation of white noise.
- Nearly equal number of 0s and 1s
- Low correlation between time shifted versions of the same sequence
- Very low cross-correlation between any two sequences.
- Many methods exist for the generation of PN sequences
 - Walsh code
 - m-sequence
 - Gold sequence

—

PN SEQUENCE: WALSH CODE

- Each row of the matrix is a PN sequence
- The PN sequences generated by using Walsh code are perfectly orthogonal with each other.
- Sequence length: $N = 2^m$
- There are *N* length-*N* sequences.

PN SEQUENCE: M-SEQUENCE

• m-sequence

- Also called maximal length sequence
- Sequence length: $N = 2^{m-1}$ (m: # of registers)
- Generated by using shift register

ARKANSAS

PN SEQUENCE: M-SEQUENCE

• m-sequence (Cont'd)

- 15 registers: $m = 15 \Rightarrow N = 2^{15} 1 = 32767$
 - The sequence will repeat itself for every 32767 chips.
 - Short code
 - Can be used for synchronization between Tx and Rx
 - Only when the clock between Tx and Rx are synchronized will the receiver gets strong signal → adjust the receiver clock until a strong signal is obtained → synchronization.
- 42 registers: $m = 42 \Rightarrow N = 2^{42} 1 = 4398$ billions
 - The sequence will repeat itself for every 4398 billion chips
 - Long code
 - Can be used for scrambling (security)
 - Different users start the sequence from different offsets.
 - User data is XORed with chunks of long code with same length.
 - Impossible to detect the data without knowledge of long code.

OUTLINE

- CDMA Fundamentals
- Pseudo-noise sequence
- Rake receiver

RAKE RECEIVER

• Rake receiver

ZANISAS

- Spread spectrum: signal bandwidth is very large → signal BW >> channel coherence BW → frequency selective fading
 - Relative delay among multipath components is no longer negligible.
- The received signal is the combination of signals with different delays.
- E.g. two path equal gain channel, space between two channel taps: 4 chips

RAKE RECEIVER

• Rake receiver

- Rake receiver is made up of several Rake fingers
 - Each finger corresponds to one of the multipath components.
- Due to the low correlation between time shifted version of the same PN code, each finger can be treated as flat fading → no equalization needed!

CDMA

• Major advantages:

- Resistant to narrow band interference
- Combats multipath fading (no equalization required)
- Multiple users can share the same spectrum
- Good security
- Major disadvantages
 - MAI
 - Near-far effect.

