Department of Electrical Engineering University of Arkansas

ELEG 5693 Wireless Communications Ch. 6 Diversity

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Introduction
- Classification
- Space Diversity Techniques
- Space Time Block Code

INTRODUCTION

• What is diversity?

- E.g. Transmit the same signal several times.
 - Receiver has multiple copies of the same signal.
 - Each copy of the signal undergoes independent fading.
 - The probability that all the signals are severely distorted (deeply faded) simultaneously is small.

- Diversity: Transmitting multiple replicas of the same signal at statistically independent fading channel to improve communication quality.
 - The probability that all the signals are distorted by channel is smaller compared to the non-diversity case.

INTRODUCTION

- Diversity can be achieved by utilizing the properties of fading
 - So far, all of our discussions treat fading as a pure negative factor to reliable high speed wireless communication.
 - Time-varying, frequency-selective
 - Degrade system performance
 - If properly handled, fading can also benefit system performance!!!
 - E.g. Time-varying fading:
 - Coherent time
 - the time period over which the channel is strongly correlated.
 - Transmit the same signal at different time periods with interval larger than coherent time
 - Achieve diversity in the time domain \rightarrow Time diversity

• Classifications:

- Time diversity
- frequency diversity
- space diversity.

OUTLINE

- Introduction
- Classification
- Space Diversity Techniques
- Space Time Block Code

CLASSIFICATION: TIME DIVERSITY

• Time diversity

- Repeatedly transmit the information bearing signal at time spacing that exceeds the coherence time of the channel. (time varying fading)
 - Signals undergo statistically independent fading in the time domain.
 - If one copy of the signal is deeply faded, it's likely that the other copies can still be detected by the receiver.
- Using redundancy in the time domain to tradeoff performance
 - Tradeoff between bandwidth efficiency and power efficiency!
- Example: channel coding with interleaving
 - Channel coding \rightarrow information + redundancy
 - Interleaving \rightarrow spread out the codeword over time.
 - If the interleaving depth is large enough, every bit of the codeword undergoes independent fading
 - If one or more bit are in error, while the other bits are right, the information can still be recovered.

CLASSIFICATION: FREQUENCY DIVERSITY

• Frequency diversity (multipath diversity)

- Transmitting the same information at different frequency bands with spacing larger than the coherent bandwidth (frequency selective fading)
 - Signals at different frequency undergo independent fading
- Explanation from time domain:
 - Frequency selective fading → multiple copies of the same signal arrive at the receiver at different time due to multipath fading.
 - Multipath components are independent → signals propagating through different path are undergoing independent fading → multipath diversity!
- − Frequency selective fading \rightarrow ISI \bigotimes
- Frequency selective fading \rightarrow mulitpath (frequency) diversity \bigodot
- Frequency diversity can be achieved by using equalization in frequency selective fading
 - After ISI is partially removed, what is remaining is frequency diversity.

CLASSIFICATION: SPACE DIVERSITY

• Space diversity (antenna diversity)

- Multiple antennas are used at transmitter and/or receiver, with spacing between two adjacent antennas being chosen to ensure the independence of fading.
 - Most popular diversity technique.
- To ensure independence
 - Mobile station: antennas are separated half wavelength or more.
 - h_{11} and h_{12} are independent
 - Base station: antenna spacing need to be several tens of wavelengths.
 - h_{11} and h_{21} are independent

CLASSIFICATION: SPACE DIVERSITY

Space diversity classifications

- Receive diversity
 - Single transmit antenna, multiple receive antenna
 - SIMO (single input multiple output)
- Transmit diversity
 - Multiple transmit antenna, single receive antenna
 - MISO (multiple input signal output)
- Diversity on both transmitter and receiver
 - Multiple transmit antennas, multiple receive antennas
 - MIMO (multiple input multiple output)

- Introduction
- Classification
- Space Diversity Techniques
- Space Time Block Code

SPACE DIVERSITY

• Instantaneous SNR of non-diversity system

- System model

$$y = h \cdot x + n$$

- Signal power

$$|h \cdot x|^2 = |h|^2 E_s$$

Power of modulation symbol

- Noise power

$$E\left[\left|n\right|^{2}\right] = \sigma_{n}^{2}$$

- Instantaneous SNR: (signal power/noise power)

$$\gamma = \left|h\right|^2 \frac{E_s}{\sigma_n^2} = \left|h\right|^2 \gamma_0$$
SNR without fading

SPACE DIVERSITY

• Instantaneous SNR

- Fading h varies with time \rightarrow SNR γ varies with time

- The fluctuation of SNR degrades the performance of wireless communication system
- If there is no fading (AWGN only), the SNR is constant
 - Space diversity will make the SNR more "flat"

SPACE DIVERSITY: COMMON TECHNIQUES

• Common receive diversity techniques

- Selection diversity
- Maximal Ratio Combining (MRC)
- Equal Gain (EG) diversity

Common transmit diversity techniques

- Transmit diversity with feedback
- Space time block code
- Space time trellis code

• MIMO

- Space time block code
- Space time trellis code

SPACE DIVERSITY: RECEIVE DIVERSITY

• System model for receive diversity

- 1Tx antennas, *N* Rx antennas.
- The signal at the *k*th Rx antenna: $y_k = h_k \cdot x + n_k$
- System equation in matrix format

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_N \end{bmatrix} \cdot x + \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_N \end{bmatrix}$$

- The same signal is received by *N* antennas.
 - Each signal undergoes independent fading

SPACE DIVERSITY: SELECTION DIVERSITY

• Selection diversity

- Out of the *N* received signals, at each symbol period, choose the one with the maximum instantaneous SNR.
 - Demodulation and decoding is performed for the signals with the maximal SNR.
 - Signals on other antennas are discarded.

- SNR of the *k*th Rx antenna

$$\gamma_{k} = \left| h_{k} \right|^{2} \cdot \gamma_{0}$$

- SNR after selection diversity

$$\gamma_{sel} = \max \{\gamma_1, \gamma_2, \cdots, \gamma_N\}$$

SPACE DIVERSITY: SELECTION DIVERSITY

• SNR after selection diversity (N = 3)

SPACE DIVERSITY: MAXIMAL RATIO COMBINGING

Maximal Ratio Combining (MRC)

- The signals from all Rx antennas are processed and combined together
- The output on the *k*th branch

$$r_{k} = \left|h_{k}\right|^{2} \cdot x + h_{k}^{*} \cdot n_{k}$$

- The output of the MRC receiver

$$r = \sum_{k=1}^{N} \left| h_{k} \right|^{2} \cdot x + \sum_{k=1}^{N} \left(h_{k}^{*} \cdot n_{k} \right)$$

SPACE DIVERSITY: MRC

• SNR of MRC

$$r = \sum_{k=1}^{N} \left| h_{k} \right|^{2} \cdot x + \sum_{k=1}^{N} \left(h_{k}^{*} \cdot n_{k} \right)$$

- Power of signal component

$$\left[\sum_{k=1}^{N} \left|h_{k}\right|^{2}\right]^{2} \cdot E_{s}$$

Power of noise

$$E\left|\sum_{k=1}^{N}\left(h_{k}^{*}\cdot n_{k}\right)\right|^{2}=\sum_{k=1}^{N}\left|h_{k}\right|^{2}\cdot \sigma_{n}^{2}$$

- The SNR of MRC equals to the sum of SNRs of individual branches!
 - MRC is the optimum diversity receiver (highest SNR among all diversity receivers.)

SPACE DIVERSITY: MRC

SPACE DIVERSITY: EQUAL GAIN COMBINING

• Equal gain combining (EGC)

- The output of the *k*th branch:

$$r_{k} = \left| h_{k} \right| \cdot x + e^{-j\theta_{k}} \cdot n_{k}$$

– The output of the Equal Gain receiver

$$r = \sum_{k=1}^{N} \left| h_{k} \right| \cdot x + \sum_{k=1}^{N} \left(e^{-j\theta_{k}} \cdot n_{k} \right)$$

SPACE DIVERSITY: EQUAL GAIN COMBINING

• SNR of equal gain combining

$$\gamma = \frac{1}{N} \left[\sum_{k=1}^{N} \left| h_{k} \right| \right]^{2} \cdot \gamma_{0}$$

• Comparison of Selection diversity, MRC, and EGC

OUTLINE

- Introduction
- Classification
- Receiver Diversity
- Space Time Block Code

Orthogonal Space Time Block Code

- Proposed by Alamouti in 1998
 - "A simple transmit diversity technique for wireless communications", IEEE Journal on Selected Areas of Communications, vol. 16, 1998.
- Suitable for system with 2 Tx antennas and arbitrary number of receive antennas
- A simple, yet powerful space diversity technique
 - It doesn't require any knowledge of the channel at transmitter.
 - ALL transmit diversity techniques before STBC require some knowledge of the channel at the transmitter
 - The transmitter can learn the channel state through feedback
 from receiver → extra bandwidth is used for feedback
- It has been adopted by 3GPP HSDPA (High Speed Downlink Packet Access)

• Structure (2 Tx, 1 Rx)

- Assumption: the channel keeps constant during two consecutive symbol periods (t_1 and t_2).
- At time t_1 , transmit x_1 on antenna 1, transmit x_2 on antenna 2.

$$y_1 = h_{11}x_1 + h_{21}x_2 + n_1$$

- At time t_2 , transmit $-x_2^*$ on antenna 2, transmit x_1^* on antenna 1.

$$y_2 = -h_{11}x_2^* + h_{21}x_1^* + n_2$$

• System equation

$$\begin{bmatrix} y_1 \\ y_2^* \end{bmatrix} = \begin{bmatrix} h_{11} & h_{21} \\ h_{21}^* & -h_{11}^* \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix}$$
$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

• Channel matrix is orthogonal

$$\mathbf{H}^{H}\mathbf{H} =$$

• Receiver

$$\mathbf{r} = \mathbf{H}^{H} \mathbf{y} =$$

$$r_{1} = \left[|h_{11}|^{2} + |h_{21}|^{2} \right] x_{1} + h_{11}^{*} n_{1} + h_{21} n_{2}^{*}$$

$$r_{2} = \left[|h_{11}|^{2} + |h_{21}|^{2} \right] x_{2}^{*} + h_{21}^{*} n_{1} - h_{11} n_{2}^{*}$$

STBC

- 2 Tx, *M* Rx
 - At time t_1 , transmit x_1 on antenna 1, transmit x_2 on antenna 2.
 - At the m-th Rx antenna

$$y_{1m} = h_{1m} x_1 + h_{2m} x_2 + n_{1m}$$

– At time t_2 , transmit – x_2^* on antenna 1, transmit x_1^* on antenna 2.

• At the m-th Rx antenna

$$y_{2m} = -h_{1m}x_{2}^{*} + h_{2m}x_{1}^{*} + n_{2m}$$

- System equation at the m-th Rx antenna

$$\begin{bmatrix} y_{1m} \\ y_{2m}^* \end{bmatrix} = \begin{bmatrix} h_{1m} & h_{2m} \\ h_{2m}^* & -h_{1m}^* \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} n_{1m} \\ n_{2m}^* \end{bmatrix}$$

$$\mathbf{y}_m = \mathbf{H}_m \mathbf{x} + \mathbf{n}_m$$

• 2 Tx, *M* Rx (Cont'd)

- System equation for all the Rx antennas

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

– Receiver

$$\mathbf{r} = \mathbf{H}^{H}\mathbf{y} =$$

