Department of Electrical Engineering University of Arkansas

ELEG 5693 Wireless Communications Ch 4. Coding

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Introduction
- Source Coding
- Channel Coding: Convolutional Code
- Interleaving

INTRODUCTION

• Coding

- Source coding
 - Convert analog information into digital representation
 - Reduce the redundancy in the digital signal (compression)
- Channel coding
 - Protect the information from channel distortions by adding redundancy.
 - Cyclic Redundancy Check (CRC), Linear Block Code, Convolutional Code (CC), Turbo Code, Low Density Parity Check (LDPC), etc.
- Coding can only be used in digital communication systems.

OUTLINE

- Introduction
- Source Coding
- Channel Coding: Linear Block Code
- Channel Coding: Convolutional Code
- Interleaving

SOURCE CODE

• Why source code?

- Convert analog signal into digital signal
 - Sampling and quantization, speech coding.
- Reduce redundancy in digital signal representation (compression)
 - To save bandwidth \rightarrow improve bandwidth efficiency.
 - E.g. Winzip

• Source code can be classified into two categories

- Lossless source code
 - No information is lost during compression
 - The original information can be perfectly recovered from the compressed information.
- Source code with loss
 - Some information is lost during compression
 - The original information cannot be perfectly recovered after compression.
 - Analog to digital conversion, JPEG, MPEG.

SOURCE CODE: SAMPLING

Sampling and quantization

Convert analog information bearing signal to digital signal without significant loss of information.

Sampling theorem

- A band-limited signal with highest frequency W Hertz can be completely recovered from its samples if the sampling rate Fs is higher than 2W Hertz.
 - Sampling in time-domain \rightarrow repetition in frequency domain.

SOURCE CODE: PCM

- Pulse Code Modulation (PCM): sampling and quantization
 - Sampling: 8000 Samples/second (125 us/sample)
 - Bandwidth of speech signal in telephone system: 4KHz.
 - Quantization: represent each sample by 8-bit sequence (256 discrete levels)
 - Data rate: 8000 x 8 = 64 kbps

SOURCE CODE: ENTROPY

- There is redundancy in the representation of information.
 - Wirxlxss Communication (21 characters)
 - For efficient information transmission, we want reduce the redundancy
 - Given random data sequence, what is the maximum redundancy in the sequence?
 - OR: what is the minimum # of bits that can be used to represent the original data without loss of information at receiver?
 - OR: what is the maximum compression rate?

Entropy

Entropy: the minimum # of bits required to represent one symbol from an information source

$$H = \sum_{k=0}^{K} p_k \log_2(1/p_k) \qquad \text{(bit/sym)}$$

- *K*: total # of possible symbols (e.g. 26 English characters)
- $-p_k$: the probability that the k-th character is generated by the source.

SOURCE CODE: ENTROPY

- E.g. 1: two symbols: '0', '1'
 - p0 = 0.5, p1 = 0.5
 - H=
 - If there are 100 binary symbols, it can be represented with bits.
- E.g. 2: two symbols: '0', '1'
 - p0 = 0.9, p1 = 0.1
 - H=
 - If there are 100 symbols, they can be represented with bits.
- E.g. 3: two symbols: '0', '1'
 - p0 = 0, p1 = 1
 - H =
 - If there are 100 symbols, they can be represented with bits.
- E.g. 4: the entropy of English is 1.1 ~ 1.6 bits/character
 - 26 characters log2(26) = 4.7 bits
 - Approximately 2/3 are redundant
 - If there are 100 English characters, they can be represented by 160 bits
 - Against: 470 bits

Speech coding

- Convert analog speech signal into digital signal.
- To reduce the bit rate R as much as possible.
 - $R \downarrow \rightarrow BW \downarrow \rightarrow$ more users in limited spectrum
 - $R \downarrow \rightarrow$ voice quality \downarrow (in general)
- Tradeoff between bandwidth efficiency and voice quality.

• Two basic speech coding schemes

- Waveform coders:
 - Strive to reproduce time or frequency domain signal waveform as precisely as possible.
 - Source independent
 - Moderate complexity and data rates (30 ~ 50 kbps)
 - e.g. PCM. Usually used in wired telephone system.
- Vocoders (also called "source code")
 - Analyze & extract key parameters using *a priori* knowledge of speech characteristics
 - Extract speech model parameters
 - Synthesize voice in Rx using model parameters
 - Signal specific parameters \rightarrow depends on user and is less robust
 - Produces very low data rates (~ 5–15 kbps)
 - Very complex & computationally intensive
 - Cellular & PCS applications where minimizing user BW → more users supported in finite spectrum → more \$\$

• Vocoders

- Model the speech generation process of vocal tract of human
- Parameters of speech
 - Voice pitch \rightarrow difficult to extract, usually < 300 Hz
 - Pole frequencies \rightarrow resonant frequencies of vocal tract
 - Centered around: 500, 1500, 2500, 3500
 - Pole amplitudes \rightarrow relative strength at different pole frequencies
 - Speech type \rightarrow voiced or unvoiced
 - Voiced: "m", "n", "v" → voice chord vibrations
 - Unvoiced: "f", "s" \rightarrow air flow through constriction
- These parameters are transmitted by the sender
 - Rx uses these parameters to synthesize the human speech
- Very complicated, but low data rate: 5 ~ 13 kbps
- Source dependent
 - Suitable for human speech, but not suitable to other sound (e.g. music)

• Linear Predictive Coders (LPC)

- A kind of time-domain vocoder
 - Extract the time domain parameters of signal.
 - Transmit the parameters of the signal instead of the actual waveform.
- Linear predictive: predict the future value based on current values.
 - Time domain speech waveform: $\mathbf{x} = [x_1, x_2, \dots, x_N]$
 - The current values and future values are correlated!

$$\hat{x}_{N+1} = \sum_{n=1}^{N} a_n x_n = \mathbf{a}^T \mathbf{x}$$

$$\mathbf{a} = [a_1, a_2, \cdots, a_N]^T \qquad \mathbf{x} = [x_1, x_2, \cdots, x_N]^T$$

- The coefficients \mathbf{a} are calculated at Tx based on the statistical properties of \mathbf{x} .
 - **x** is a random process.
- Instead of transmitting **x**, transmit **a**!
- How to calculate the coefficients? choose a to minimize the mean square error (MSE).

OUTLINE

- Introduction
- Source Coding
- Channel Coding: Convolutional Code
- Interleaving

CHANNEL CODING: OVERVIEW

Channel coding

- Protect the transmitted information by adding redundancy.
- E.g. repetition code:
 - '0': '000'
 - '1': '111'

• Error detection

- Include only enough redundant information such that the Rx can detect an error by looking at the Rx data.
 - E.g. repeat '1' 2 times. Tx (1 1), Rx (0 1) → Receiver knows there is an error, but couldn't guess what is transmitted
 - Send back Negative Acknowledgement (automatic-repeat request: ARQ)
- Error correction
 - Include enough redundant information such that the Rx can recover the original information by looking at the Rx data.
 - E.g. repeat '1' 3 times. Tx (1 1 1), Rx (0 1 1) → Receiver will guess that (1 1 1) is transmitted → detect '1'
 - Majority decision rule \rightarrow minimize the probability of error.

CHANNEL CODING: CHANNEL CAPACITY

• For an AWGN channel with bandwidth B, the maximum data rate that can be supported by the channel is

 $C(bps) = B \log_2(1 + SNR)$

- Shannon's coding theorem
 - For a channel with capacity C bps and an information source generates information at a rate less than C, then there exists a channel coding technique such that the output of the source can be transmitted by the channel with arbitrarily low error rate.

CHANNEL CODING: LBC

• Linear block code (LBC)

- Every k bits of information corresponds to a codeword of length n bits
 - E.g. repetitionon code 1-bit of information, 3-bit codeword
- n > k: there are (n-k) bits of redundancy
- The code is called: (n, k) linear block code
- Definition: code rate = (information block length)/(codeword length)
 - r = k/n
 - Measures the efficiency of the code (1-*r*: the percentage of redundancy)
 - E.g.: (3, 1) repetition code: r = 1/3. (2, 1) repetition code: r = 1/2.

CONVOLUTIONAL CODING

- What is convolutional code (CC)
 - n-bit codeword depends on not only current input, but also previous input
 - The encoder has memory
 - linear block code: n-bit codeword determined uniquely by the k-bit information
 - Compared to linear block code
 - Can achieve larger d_{\min} with higher coding rate.
 - Better power efficiency with larger bandwidth efficiency
 - More complex than LBC

• Parameters

- (*n*, *k*, *K*)
- Every *k*-bit input leads to *n*-bit output
 - Coding rate r = k/n
- *K*: constraint length (related to memory depth of the encoder)

Register representation

- *m*: current 1-bit input.
- r1, r2, r3: contents in shift register. Depends on current input and previous input
 - r1 = m: current input
 - r2, r3: previous inputs
- *c1* and *c2*: 2-bit output. Depends on r1, r2, r3
 - c1 = r1 + r2 + r3
 - c2 = r1 + r3
- (n = 2, k = 1, K = 3)

• State

- Every input depends on current input r1=m, and previous inputs (r2, r3)
- State: (r2, r3): state a: 00; state b: 10; state c: 01; state d: 11
- Input-output table representation

Input	Current state	(r1, r2, r3)	Next state	Output
	(r2, r3) now		(r2, r3) after shift	(c1, c2)
0	a (0 0)	000	a (0 0)	(0, 0)
0	c (0 1)	001	a (0 0)	(1, 1)
0	b (1 0)			
0	d (1 1)			
1	a (0 0)			
1	c (0 1)			
1	b (1 0)			
1	d (1 1)			

• (n, k, K)

- n = 2: 2-bit of output
- k = 1: 1-bit of input
- K = 3: output depends on current input, and two previous inputs
- State:
 - Every output depends not only current input, but also (*K* − 1) = 2 previous inputs → the encoder remembers the previous (*K* − 1) inputs → the encoder has a memory depth of (*K*-1)
 - For a particular 1-bit of input, the encoder might be in one of 4 possible states → there are four possible outputs
 - Output depends on:
 - 1. current input
 - 2. state of the encoder
 - # of states: $2^{(K-1)\cdot k}$

- Example: encoding by using state transition diagram
 - Initial state: a
 - Input bits: (1 1 0 0 0 1 0)
 - 1st bit: (state = a, input = 1) \rightarrow (next state = b, output = 11)
 - 2^{nd} bit: (state = b, input = 1) \rightarrow (next state = d, output = 01)
 - 3^{rd} bit: (state = d, input = 0) \rightarrow (next state = c, output = 01)
 - 4th bit: (state = c, input = 0) \rightarrow (next state = a, output = 11)
 - 5th bit: (state = a, input = 0) \rightarrow
 - 6^{th} bit:
 - -7^{th} bit:

a: 00	
b: 10	
c: 01	
d: 11	

• Example:

- initial state: a
- Input bits: (1 1 0 0 0 1 0)
- 1st bit: (state = a, input = 1) \rightarrow (next state = b, output = 11)
- 2^{nd} bit: (state = b, input = 1) \rightarrow
- 3^{rd} bit:
- -4^{th} bit:
- -5^{th} bit:
- 6^{th} bit:
- -7^{th} bit:

• Four alternative encoder representations:

- Register representation
 - Usually used by hardware implementation of CC encoder
- Input-output table representation
- State transition diagram representation
- Trellis diagram representation
 - Mainly used by decoder for decoding
- The 4 alternative representations are equivalent
 - Given one representation, we can easily find out the other three representations.

Optimum hard decoding

- s: length *m* information vector (sequence of 0's and 1's)
- **c**: length n = m/r CC codeword (sequence of 0's and 1's)
- x: modulated symbols (modulation symbols)
- y: received symbols (distorted by channels)
- $\hat{\mathbf{c}}$: length n = m/r demodulated information (sequence of 0's and 1's)
- $\hat{\mathbf{s}}$: decoded length *r* information vector (sequence of 0's and 1's).
- If the block length is *m*, there are 2^m possible codewords
 - Decoding: find the codeword that has the smallest Hamming distance with $\hat{\boldsymbol{c}}$

• Example: block length m = 3, initial state a (0 0)

- Input (0 0 0) → output (0 0 0 0 0 0)
- Input $(0\ 0\ 1) \rightarrow$ output $(0\ 0\ 0\ 1\ 1)$
- Input $(0\ 1\ 0) \rightarrow$ output $(0\ 0\ 1\ 1\ 1\ 0)$
- Input (0 1 1) → output (0 0 1 1 0 1)
- Input $(1\ 0\ 0) \rightarrow$ output $(1\ 1\ 1\ 0\ 1\ 1)$
- Input $(1\ 0\ 1) \rightarrow$ output $(1\ 1\ 1\ 0\ 0\ 0)$
- Input (1 1 0) → output (1 1 0 1 0 1)
- Input $(1\ 1\ 1) \rightarrow$ output $(1\ 1\ 0\ 1\ 1\ 0)$
- If the vector after demodulator is $\hat{\mathbf{c}} = [1\ 0\ 0\ 1\ 0\ 1]$
 - Distance with the 8 possible codewords
 - c1: 3, c2: 3, c3: 4, c4: , c5: , c6: , c7: , c8:
 - Winner:
 - Decoded information:

- Optimum hard decoding: find the codeword with the smallest Hamming distance
 - Exhaustive searching works fine when information block length is small
 - $m = 3 \rightarrow 2^3 = 8$ possible codewords
 - $m = 8 \rightarrow 2^8 = 256$ possible codewords
 - The computational complexity becomes inhibitively expensive when information block length is large
 - Typical information block length: 100

•
$$m = 20 \rightarrow 2^{20} = 1,048,576$$

•
$$m = 100 \Rightarrow 2^{100} = 1.27 \times 10^{30}$$

- When *m* is large, it's impossible to find the optimum codeword by exhaustive searching all the possible codewords!
- The optimum hard decoding can be performed by exploiting the trellis structure of the encoder
 - Viterbi algorithm

• Optimum decoding by using Viterbi algorithm

- The process of CC encoding is equivalent to find a path along the trellis transition diagram.
 - E.g. Input of CC encoder $(1\ 1\ 0) \rightarrow$ codeword: $(11\ 01\ 01)$
- Decoding: find out the path with the smallest Hamming distance with received codeword.

31

- Optimum decoding by using Viterbi algorithm
 - At each transition, for each ending state, find the branch minimizing the accumulated Hamming distance (survival branch)

 $d_k = d_{k-1} + d$ (current output,branch output)

- d_{k-1} : accumulated Hamming distance from the previous transition
- *d*(current output, branch output): the Hamming distance of this branch

One survival branch for each ending state!

• Viterbi algorithm: example (first transition)

a: d1 = 0 + d(10, 00) = 1 **b:** d1 = 0 + d(10, 11) = 1

a: d2 = 1 + d(01, 00) = 2 b: d2 = 1 + d(01, 11) = 2 c: d2 = 1 + d(01, 10) = 3 d: d2 = 1 + d(01, 01) = 1

• Viterbi algorithm: example (fourth transition)

a: d4 = 3 + d(11, 00) = 5

d4 = 1 + d(11, 11) = 1

• Viterbi algorithm: example (fourth transition)

a: d4 = 3+d(11, 00) = 5 **b:** d4 = 3+d(11, 11) = 3

d4 = 1 + d(11, 11) = 1 d4 = 1 + d(11, 00) = 3

• Viterbi algorithm: example (fourth transition)

a: d4 = 3 + d(11, 00) = 5 b: d4 = 3 + d(11, 11) = 3 c: d4 = 3 + d(11, 10) = 4 d: d4 = 3 + d(11, 01) = 4d4 = 1 + d(11, 11) = 1 d4 = 1 + d(11, 00) = 3 d4 = 2 + d(11, 01) = 3 d4 = 2 + d(11, 10) = 3

• Viterbi algorithm: example: survival path

a: d4 = 3 + d(11, 00) = 5 b: d4 = 3 + d(11, 11) = 3 c: d4 = 3 + d(11, 10) = 4 d: d4 = 3 + d(11, 01) = 4d4 = 1 + d(11, 11) = 1 d4 = 1 + d(11, 00) = 3 d4 = 3 + d(11, 01) = 4 d4 = 3 + d(11, 10) = 4

• Viterbi algorithm: example: survival path

Output of decoder: 1 1 0 0

OUTLINE

- Introduction
- Source Coding
- Channel Coding: Linear Block Code
- Channel Coding: Convolutional Code
- Interleaving

Motivation

- In fading channel, error usually occurs in burst:
 - a sequence of consecutive error bits.
- Some channel coding scheme can only correct a few bits of error in one block
 - E.g. (5, 2) linear block code can correct only 1 bit error in one block.
- What if the number of error bits in one block exceeds the correction ability of the channel code?
- Solution: interleaving!

• Interleaving

- Spread out bits of one codeword in time such they are undergoing independent fading.
- Two kinds of interleaver:
 - block interleaving
 - Convolutional interleaving.

Block interleaving

- Spread the encoded data into a rectangular matrix of *m* row and *n* columns.
- The matrix is filled row-wise
 - $b_1 \rightarrow (1,1), b_2 \rightarrow (1,2), \cdots, b_n \rightarrow (1,n)$ $b_{n+1} \rightarrow (2,1), \cdots, b_{2n} \rightarrow (2,n)$
- The matrix is readout column-wise

Block interleaving

- E.g. before interleaving: [b1, b2, b3, b4, b5, ..., b11, b12]

b1	b2	b3	b4
b5	b6	b7	b8
b9	b10	b11	b12

- After interleaving
 - [b1, b5, b9, b2, b6, b10, b3, b7, b11, b4, b8, b12]
 - The bits are transmitted in this order
 - One codeword is spread out in time

Block deinterleaving

- At the receiver, the deinterlever performs the reverse operation
 - Fill the matrix with the received bits column wise
 - Read out the matrix row wise.

• How could interleaving help?

- E.g. if 3-bit burst error happens during transmission
 - [b1, b5, b9, b2, **b6**, **b10**, **b3**, b7, b11, b4, b8, b12]
- After deinterleaving
 - [b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12]
 - the 3-bit error is spread out to three codewords!
- The system can correct 3-bit error !

b1	b2	b3	b4
b5	b 6	b7	b 8
b9	b10	b11	b12

• Block interleaving

- The burst of *m* consecutive errors results in isolated 1-bit error at the output of the deinterleaver
- The number of rows *m* is called the interleaver depth
 - The correction capability of channel coding is multiplied by *m* times!
- Cost:
 - longer delay:
 - decoding cannot be performed until all *mn* bits are received. (delay improved by a factor of *m*)
 - Tradeoff between power efficiency and delay
 - Larger memory
 - *mn* bits
 - (without interleaver: n bits)

SUMMARY

• Source coding

- Why? Convert analog information into digital; reduce redundancy.
- Lossless source code, source code with loss.
- PCM, Entropy, speech coding (waveform, vocoder)

Channel coding

- Add redundancy to protect information (error correction, error detection) → tradeoff between bandwidth efficiency and power efficiency
- Channel capacity

• Linear block code

- Generation matrix, parity check matrix, syndrome decoding
- Coding rate, Hamming distance, Minimum Hamming distance

Convolutional code

- Four representations (shift register, input-output table, state transition, trellis)
- Decoding: Viterbi algorithm

Interleaving

- Spread out the bits of one codeword in time
- Block interleaver.
- Tradeoff between power efficiency and processing delay.

