
Department of Electrical Engineering
University of Arkansas

ELEG 5693 Wireless Communications

Ch 4. Coding

Dr. Jingxian Wu

wuj@uark.edu

2

OUTLINE

• Introduction

• Source Coding

• Channel Coding: Convolutional Code

• Interleaving

3

INTRODUCTION

• Coding

– Source coding

• Convert analog information into digital representation

• Reduce the redundancy in the digital signal (compression)

– Channel coding

• Protect the information from channel distortions by adding
redundancy.

• Cyclic Redundancy Check (CRC), Linear Block Code,
Convolutional Code (CC), Turbo Code, Low Density Parity
Check (LDPC), etc.

• Coding can only be used in digital communication
systems.

Source

Coding

Channel

Coding

Analog or digital information

4

OUTLINE

• Introduction

• Source Coding

• Channel Coding: Linear Block Code

• Channel Coding: Convolutional Code

• Interleaving

5

SOURCE CODE

• Why source code?

– Convert analog signal into digital signal

• Sampling and quantization, speech coding.

– Reduce redundancy in digital signal representation (compression)

• To save bandwidth  improve bandwidth efficiency.

• E.g. Winzip

• Source code can be classified into two categories

– Lossless source code

• No information is lost during compression

• The original information can be perfectly recovered from the
compressed information.

– Source code with loss

• Some information is lost during compression

• The original information cannot be perfectly recovered after
compression.

• Analog to digital conversion, JPEG, MPEG.

6

SOURCE CODE: SAMPLING

• Sampling and quantization

– Convert analog information bearing signal to digital signal without

significant loss of information.

• Sampling theorem

– A band-limited signal with highest frequency W Hertz can be

completely recovered from its samples if the sampling rate Fs is

higher than 2W Hertz.

• Sampling in time-domain  repetition in frequency domain.

f
W-W

fW-W fW-WFs-Fs Fs-Fs

Fs > 2W Fs < 2W

7

SOURCE CODE: PCM

• Pulse Code Modulation (PCM): sampling and quantization

– Sampling: 8000 Samples/second (125 us/sample)

• Bandwidth of speech signal in telephone system: 4KHz.

– Quantization: represent each sample by 8-bit sequence (256 discrete levels)

– Data rate: 8000 x 8 = 64 kbps

Sampling

Quantization

64kbps used in wired telephone system:

too high for wireless communication!

8

SOURCE CODE: ENTROPY

• There is redundancy in the representation of information.

– Wirxlxss Commuxication (21 characters)

– For efficient information transmission, we want reduce the redundancy

– Given random data sequence, what is the maximum redundancy in the sequence?

• OR: what is the minimum # of bits that can be used to represent the original

data without loss of information at receiver?

• OR: what is the maximum compression rate?

• Entropy

– Entropy: the minimum # of bits required to represent one symbol from an

information source





K

k

kk ppH
0

2)/1(log

– K: total # of possible symbols (e.g. 26 English characters)

– : the probability that the k-th character is generated by the source. kp

(bit/sym)

9

SOURCE CODE: ENTROPY

• E.g. 1: two symbols: ‘0’, ‘1’
– p0 = 0.5, p1 = 0.5

– H =

– If there are 100 binary symbols, it can be represented with bits.

• E.g. 2: two symbols: ‘0’, ‘1’
– p0 = 0.9, p1 = 0.1

– H =

– If there are 100 symbols, they can be represented with bits.

• E.g. 3: two symbols: ‘0’, ‘1’
– p0 = 0, p1 = 1

– H =

– If there are 100 symbols, they can be represented with bits.

• E.g. 4: the entropy of English is 1.1 ~ 1.6 bits/character
– 26 characters log2(26) = 4.7 bits

– Approximately 2/3 are redundant

– If there are 100 English characters, they can be represented by 160 bits

• Against: 470 bits

10

SOURCE CODE: SPEECH CODING

• Speech coding

– Convert analog speech signal into digital signal.

– To reduce the bit rate R as much as possible.

• R  BW  more users in limited spectrum

• R  voice quality  (in general)

– Tradeoff between bandwidth efficiency and voice quality.

11

SOURCE CODE: SPEECH CODING

• Two basic speech coding schemes

– Waveform coders:

• Strive to reproduce time or frequency domain signal waveform as
precisely as possible.

• Source independent

• Moderate complexity and data rates (30 ~ 50 kbps)

• e.g. PCM. Usually used in wired telephone system.

– Vocoders (also called “source code”)

• Analyze & extract key parameters using a priori knowledge of speech
characteristics

– Extract speech model parameters

– Synthesize voice in Rx using model parameters

• Signal specific parameters  depends on user and is less robust

• Produces very low data rates (~ 515 kbps)

– Very complex & computationally intensive

• Cellular & PCS applications where minimizing user BW  more
users supported in finite spectrum  more $$

12

SOURCE CODE: SPEECH CODING

• Vocoders

– Model the speech generation process of vocal tract of human

– Parameters of speech

• Voice pitch  difficult to extract, usually < 300 Hz

• Pole frequencies  resonant frequencies of vocal tract

– Centered around: 500, 1500, 2500, 3500

• Pole amplitudes  relative strength at different pole frequencies

• Speech type  voiced or unvoiced

– Voiced: “m”, “n”, “v”  voice chord vibrations

– Unvoiced: “f”, “s”  air flow through constriction

– These parameters are transmitted by the sender

• Rx uses these parameters to synthesize the human speech

– Very complicated, but low data rate: 5 ~ 13 kbps

– Source dependent

• Suitable for human speech, but not suitable to other sound (e.g. music)

13

SOURCE CODE: SPEECH CODING

• Linear Predictive Coders (LPC)

– A kind of time-domain vocoder

• Extract the time domain parameters of signal.

• Transmit the parameters of the signal instead of the actual waveform.

– Linear predictive: predict the future value based on current values.

• Time domain speech waveform:

• The current values and future values are correlated!

xa
T

N

n

nnN xax 




1

1
ˆ

– The coefficients a are calculated at Tx based on the statistical properties of x.

• x is a random process.

– Instead of transmitting x, transmit a!

• How to calculate the coefficients? – choose a to minimize the mean square
error (MSE).

T

Naaa],,,[21 a
T

Nxxx],,,[21 x

],,,[21 Nxxx x

14

OUTLINE

• Introduction

• Source Coding

• Channel Coding: Convolutional Code

• Interleaving

15

CHANNEL CODING: OVERVIEW

• Channel coding

– Protect the transmitted information by adding redundancy.

– E.g. repetition code:

• ‘0’: ‘000’

• ‘1’: ‘111’

• Error detection

– Include only enough redundant information such that the Rx can detect an error
by looking at the Rx data.

• E.g. repeat ‘1’ 2 times. Tx (1 1), Rx (0 1)  Receiver knows there is an
error, but couldn’t guess what is transmitted

• Send back Negative Acknowledgement (automatic-repeat request: ARQ)

• Error correction

– Include enough redundant information such that the Rx can recover the original
information by looking at the Rx data.

• E.g. repeat ‘1’ 3 times. Tx (1 1 1), Rx (0 1 1)  Receiver will guess that (1
1 1) is transmitted  detect ‘1’

• Majority decision rule  minimize the probability of error.

16

CHANNEL CODING: CHANNEL CAPACITY

• For an AWGN channel with bandwidth B, the maximum data rate that

can be supported by the channel is

)1(log)bps(2 SNRBC 

• Shannon’s coding theorem

– For a channel with capacity C bps and an information source generates

information at a rate less than C, then there exists a channel coding

technique such that the output of the source can be transmitted by the

channel with arbitrarily low error rate.

Source

H < C
Channel coding

Channel

Capacity C

17

CHANNEL CODING: LBC

• Linear block code (LBC)

– Every k bits of information corresponds to a codeword of length n bits

• E.g. repetitionon code 1-bit of information, 3-bit codeword

– n > k: there are (n-k) bits of redundancy

– The code is called: (n, k) linear block code

– Definition: code rate = (information block length)/(codeword length)

• r = k/n

• Measures the efficiency of the code (1-r: the percentage of redundancy)

• E.g.: (3, 1) repetition code: r = 1/3. (2, 1) repetition code: r = 1/2.

LBCk bits information n bits codeword

18

CONVOLUTIONAL CODING

• What is convolutional code (CC)

– n-bit codeword depends on not only current input, but also previous input

• The encoder has memory

– linear block code: n-bit codeword determined uniquely by the k-bit

information

– Compared to linear block code

• Can achieve larger with higher coding rate.

– Better power efficiency with larger bandwidth efficiency

• More complex than LBC

• Parameters

– (n, k, K)

– Every k-bit input leads to n-bit output

• Coding rate r = k/n

– K: constraint length (related to memory depth of the encoder)

mind

19

CC: ENCODER

• Register representation

– m: current 1-bit input.

– r1, r2, r3: contents in shift register. Depends on current input and previous input

• r1 = m: current input

• r2, r3: previous inputs

– c1 and c2: 2-bit output. Depends on r1, r2, r3

• c1 = r1 + r2 + r3

• c2 = r1 + r3

– (n = 2, k = 1, K = 3)

m

c1

c2

r1 r2 r3

20

CC: ENCODER

• Example: m = [1 1 0 0], initially (r1=0, r2=0, r3=0)

1

1+0+0=1

1+0=1

1 0 0

first input bit: 1

1

1+1+0=0

1+0=1

1 1 0

second input bit: 1

(shift 1 bit to the right)

0

1+0+0=1

0+1=1

0 1 1

third input bit: 1

(shift 1 bit to the right)

0

1+0+0=1

0+1=1

0 0 1

fourth input bit: 1

(shift 1 bit to the right)

21

CC: ENCODER

• State

– Every input depends on current input r1=m, and previous inputs (r2, r3)

– State: (r2, r3): state a: 00; state b: 10; state c: 01; state d: 11

• Input-output table representation

Input Current state

(r2, r3) now

(r1, r2, r3) Next state

(r2, r3) after shift

Output

(c1, c2)

0 a (0 0) 0 0 0 a (0 0) (0, 0)

0 c (0 1) 0 0 1 a (0 0) (1, 1)

0 b (1 0)

0 d (1 1)

1 a (0 0)

1 c (0 1)

1 b (1 0)

1 d (1 1)

22

CC: ENCODER

• (n, k, K)

– n = 2: 2-bit of output

– k = 1: 1-bit of input

– K = 3: output depends on current input, and two previous inputs

• State:

– Every output depends not only current input, but also (K – 1) = 2

previous inputs  the encoder remembers the previous (K – 1)

inputs  the encoder has a memory depth of (K-1)

– For a particular 1-bit of input, the encoder might be in one of 4

possible states  there are four possible outputs

– Output depends on:

• 1. current input

• 2. state of the encoder

– # of states: kK )1(2

23

CC: ENCODER

• State transition representation

– (2, 1, 3)-CC, states 42)1( kK

a: 00

b: 10

c: 01

d: 11

a=00

b=10

d=11

c=01

1/11

1/01

1/10

0/01

0/10

1/00

0/11

0/00

input/output

: input 0

: input 1

24

CC: ENCODER

• Example: encoding by using state transition diagram

– Initial state: a

– Input bits: (1 1 0 0 0 1 0)

– 1st bit: (state = a, input = 1)  (next state = b, output = 11)

– 2nd bit: (state = b, input = 1)  (next state = d, output = 01)

– 3rd bit: (state = d, input = 0)  (next state = c, output = 01)

– 4th bit: (state = c, input = 0)  (next state = a, output = 11)

– 5th bit: (state = a, input = 0) 

– 6th bit:

– 7th bit:

25

CC: ENCODER

• Trellis diagram representation a: 00

b: 10

c: 01

d: 11

input/output

a = 00

b = 10

d = 11

c = 01

0/00 0/00

1/11 1/11

0/10

1/01

0/00

1/11

0/10

1/01

1/10

0/01

0/11

1/00

26

CC: ENCODER

• Example:

– initial state: a

– Input bits: (1 1 0 0 0 1 0)

– 1st bit: (state = a, input = 1)  (next state = b, output = 11)

– 2nd bit: (state = b, input = 1) 

– 3rd bit:

– 4th bit:

– 5th bit:

– 6th bit:

– 7th bit:

0/00

1/11

0/10

1/01

1/10

0/01

0/11

1/00

a

b

c

d

27

CC: ENCODER

• Four alternative encoder representations:

– Register representation

• Usually used by hardware implementation of CC encoder

– Input-output table representation

– State transition diagram representation

– Trellis diagram representation

• Mainly used by decoder for decoding

– The 4 alternative representations are equivalent

• Given one representation, we can easily find out the other three

representations.

28

CC: DECODER

• Optimum hard decoding

CC

Encoder
Channel Demodulator

CC

Decoder
Modulator

s c x y ĉ ŝ

– s: length m information vector (sequence of 0’s and 1’s)

– c: length n = m/r CC codeword (sequence of 0’s and 1’s)

– x: modulated symbols (modulation symbols)

– y: received symbols (distorted by channels)

– : length n = m/r demodulated information (sequence of 0’s and 1’s)

– : decoded length r information vector (sequence of 0’s and 1’s).

– If the block length is m, there are possible codewords

• Decoding: find the codeword that has the smallest Hamming
distance with

ĉ

ŝ

m2

ĉ

29

CC: DECODER

• Example: block length m = 3, initial state a (0 0)

– Input (0 0 0)  output (0 0 0 0 0 0)

– Input (0 0 1)  output (0 0 0 0 1 1)

– Input (0 1 0)  output (0 0 1 1 1 0)

– Input (0 1 1)  output (0 0 1 1 0 1)

– Input (1 0 0)  output (1 1 1 0 1 1)

– Input (1 0 1)  output (1 1 1 0 0 0)

– Input (1 1 0)  output (1 1 0 1 0 1)

– Input (1 1 1)  output (1 1 0 1 1 0)

– If the vector after demodulator is [1 0 0 1 0 1]

• Distance with the 8 possible codewords

– c1: 3, c2: 3, c3: 4, c4: , c5: , c6: , c7: , c8:

– Winner:

– Decoded information:

ĉ

30

CC: DECODER

• Optimum hard decoding: find the codeword with the smallest

Hamming distance

– Exhaustive searching works fine when information block length is small

• m = 3  2^3 = 8 possible codewords

• m = 8  2^8 = 256 possible codewords

– The computational complexity becomes inhibitively expensive when

information block length is large

• Typical information block length: 100

• m = 20 

• m = 100 

– When m is large, it’s impossible to find the optimum codeword by

exhaustive searching all the possible codewords!

– The optimum hard decoding can be performed by exploiting the trellis

structure of the encoder

• Viterbi algorithm

30100 1027.12 

576,048,1220 

31

CC: DECODER

• Optimum decoding by using Viterbi algorithm

– The process of CC encoding is equivalent to find a path along the trellis

transition diagram.

• E.g. Input of CC encoder (1 1 0)  codeword: (11 01 01)

– Decoding: find out the path with the smallest Hamming distance with received

codeword.

a = 00

b = 10

d = 11

c = 01

0/00 0/00

1/11 1/11

0/10

1/01

0/00

1/11

0/10

1/01

1/10

0/01

0/11

1/00

32

CC: DECODER

• Optimum decoding by using Viterbi algorithm

– At each transition, for each ending state, find the branch minimizing the

accumulated Hamming distance (survival branch)

• accumulated Hamming distance from the previous transition

• the Hamming distance of this branch

output)branch output,current (1 ddd kk  

:1kd

:output)branch output,current (d

0/00

1/11

0/10

1/01
0/01

0/11

1/00One survival branch for

each ending state!

1/10

33

CC: DECODER

• Viterbi algorithm: example (first transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d1 = 0+d(10, 00) = 1 b: d1 = 0+d(10, 11) = 1

34

CC: DECODER

• Viterbi algorithm: example (second transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d2 = 1+d(01, 00) = 2 b: d2 = 1+d(01, 11) = 2

0/00 (2)

1/11 (2)

0/10 (3)

1/01 (1)

c: d2 = 1+d(01, 10) = 3 d: d2 = 1+d(01, 01) = 1

35

CC: DECODER

• Viterbi algorithm: example (third transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d3 = 2+d(01, 00) = 3

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

0/11 (4)

d3 = 3+d(01, 11) = 4

36

CC: DECODER

• Viterbi algorithm: example (third transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d3 = 2+d(01, 00) = 3

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d3 = 3+d(01, 11) = 4

1/11

1/00

b: d3 = 2+d(01, 11) = 3

d3 = 3+d(01, 00) = 4

(3)

(4)

37

CC: DECODER

• Viterbi algorithm: example (third transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d3 = 2+d(01, 00) = 3

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d3 = 3+d(01, 11) = 4

1/11

b: d3 = 2+d(01, 11) = 3

d3 = 3+d(01, 00) = 4

(3)

0/10

0/01

c: d3 = 2+d(01, 10) =

d3 = 1+d(01, 01) =

(4)

(1)

38

CC: DECODER

• Viterbi algorithm: example (third transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d3 = 2+d(01, 00) = 3

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d3 = 3+d(01, 11) = 4

1/11

b: d3 = 2+d(01, 11) = 3

d3 = 3+d(01, 00) = 4

(3)

0/01

c: d3 = 2+d(01, 10) =

d3 = 1+d(01, 01) =

(1)

1/01

1/10

d: d3 = 2+d(01, 01) =

d3 = 1+d(01, 10) =

(2)

(3)

39

CC: DECODER

• Viterbi algorithm: example (fourth transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d4 = 3+d(11, 00) = 5

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d4 = 1+d(11, 11) = 1

1/11 (3)

0/01 (1)

1/01(2)

0/00 (5)

0/11(1)

40

CC: DECODER

• Viterbi algorithm: example (fourth transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d4 = 3+d(11, 00) = 5

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d4 = 1+d(11, 11) = 1

1/11 (3)

0/01 (1)

1/01(2)

0/11(1)

b: d4 = 3+d(11, 11) = 3

d4 = 1+d(11, 00) = 3

1/11

1/00

(3)

(3)

41

CC: DECODER

• Viterbi algorithm: example (fourth transition)

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d4 = 3+d(11, 00) = 5

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d4 = 1+d(11, 11) = 1

1/11 (3)

0/01 (1)

1/01(2)

0/11(1)

b: d4 = 3+d(11, 11) = 3

d4 = 1+d(11, 00) = 3

1/11(3)

c: d4 = 3+d(11, 10) = 4

d4 = 2+d(11, 01) = 3

1/10(3)

d: d4 = 3+d(11, 01) = 4

d4 = 2+d(11, 10) = 3

0/01(3)

42

CC: DECODER

• Viterbi algorithm: example: survival path

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

a: d4 = 3+d(11, 00) = 5

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

d4 = 1+d(11, 11) = 1

1/11 (3)

0/01 (1)

1/01

1/10

(2)

(3)

0/11(1)

b: d4 = 3+d(11, 11) = 3

d4 = 1+d(11, 00) = 3

1/11(3)

0/01(3)

c: d4 = 3+d(11, 10) = 4

d4 = 3+d(11, 01) = 4

1/01 (3)

0/10(4)

d: d4 = 3+d(11, 01) = 4

d4 = 3+d(11, 10) = 4

43

CC: DECODER

• Viterbi algorithm: example: survival path

a = 00

b = 10

d = 11

c = 01

0/00 (1)

1/11 (1)

10Output of demodulator: 01 01 11

0/00 (3)

1/11 (2)

0/10 (3)

1/01 (1)

0/00 (2)

1/11 (3)

0/01 (1)

1/01

1/10

(2)

(3)

0/11(1)

1/11(3)

0/01(3)

1/01 (3)

0/10(4)

Output of decoder: 1 1 0 0

44

OUTLINE

• Introduction

• Source Coding

• Channel Coding: Linear Block Code

• Channel Coding: Convolutional Code

• Interleaving

45

INTERLEAVING

• Motivation

– In fading channel, error usually occurs in burst:

• a sequence of consecutive error bits.

– Some channel coding scheme can only correct a few bits of error in one

block

• E.g. (5, 2) linear block code can correct only 1 bit error in one block.

– What if the number of error bits in one block exceeds the correction

ability of the channel code?

– Solution: interleaving!

• Interleaving

– Spread out bits of one codeword in time such they are undergoing

independent fading.

– Two kinds of interleaver:

• block interleaving

• Convolutional interleaving.

46

INTERLEAVING

• Block interleaving

– Spread the encoded data into a rectangular matrix of m row and n

columns.

– The matrix is filled row-wise

•

– The matrix is readout column-wise

),2(,),1,2(

),1(,),2,1(),1,1(

21

21

nbb

nbbb

nn

n





 



Channel

coding
Interleaving Modulation Channel

demodulationDeinterleaving
Channel

Decoding

47

INTERLEAVING

• Block interleaving

– E.g. before interleaving: [b1, b2, b3, b4, b5, …, b11, b12]

• After interleaving

– [b1, b5, b9, b2, b6, b10, b3, b7, b11, b4, b8, b12]

– The bits are transmitted in this order

– One codeword is spread out in time

• Block deinterleaving

– At the receiver, the deinterlever performs the reverse operation

• Fill the matrix with the received bits column wise

• Read out the matrix row wise.

b1 b2 b3 b4

b5 b6 b7 b8

b9 b10 b11 b12

48

INTERLEAVING

• How could interleaving help?

– E.g. if 3-bit burst error happens during transmission

• [b1, b5, b9, b2, b6, b10, b3, b7, b11, b4, b8, b12]

– After deinterleaving

• [b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12]

– the 3-bit error is spread out to three codewords!

– The system can correct 3-bit error !

b1 b2 b3 b4

b5 b6 b7 b8

b9 b10 b11 b12

49

INTERLEAVING

• Block interleaving

– The burst of m consecutive errors results in isolated 1-bit error at

the output of the deinterleaver

– The number of rows m is called the interleaver depth

• The correction capability of channel coding is multiplied by m

times!

– Cost:

• longer delay:

– decoding cannot be performed until all mn bits are

received. (delay improved by a factor of m)

– Tradeoff between power efficiency and delay

• Larger memory

– mn bits

– (without interleaver: n bits)

50

SUMMARY

• Source coding

– Why? Convert analog information into digital; reduce redundancy.

– Lossless source code, source code with loss.

– PCM, Entropy, speech coding (waveform, vocoder)

• Channel coding

– Add redundancy to protect information (error correction, error detection) 
tradeoff between bandwidth efficiency and power efficiency

– Channel capacity

• Linear block code

– Generation matrix, parity check matrix, syndrome decoding

– Coding rate, Hamming distance, Minimum Hamming distance

• Convolutional code

– Four representations (shift register, input-output table, state transition, trellis)

– Decoding: Viterbi algorithm

• Interleaving

– Spread out the bits of one codeword in time

– Block interleaver.

– Tradeoff between power efficiency and processing delay.

