Department of Electrical Engineering University of Arkansas

ELEG5693 Wireless Communications Propagation and Noise Part II

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

FADING: WHAT IS FADING?

- Path loss and shadowing is caused by large objects that are distant from MS.
 - Even the MS is moving, the change in the relative position between MS and those distant large objects is small.
 - Therefore, the impairments caused by those large distant objects change very slow with respect to (w.r.t.) time and position.
 - Shadowing is also referred to as large scale fading.
- Small scale fading is caused by the effects of objects that are close to MS.
 - The movement of MS w.r.t. nearby small objects will dramatically change the reflection or diffractions of propagated signals.
 - The signal at receiver (sum of the signals from all multiple paths) will change rapidly with the movement of MS.

Small scale fading: rapid fluctuation of the received signals over short distance.

FADING: WHAT IS FADING

FADING: WHAT IS FADING?

- Random # of multipath components
 - The amplitude, phase, and frequency of each component change w.r.t. the movement of MS.
 - The signal at the receiver is the summation of all the multipath components \rightarrow the amplitude, phase, and frequency of the received signal at receiver change w.r.t. the movement of MS.
 - The movement of surrounding objects (e.g. vehicles) will also cause the time variation of the signals.

FADING: AN EXAMPLE

• The rate of variation depends on two factors:

- Relative movement speed between Tx and Rx
- Speed of surrounding objects

FADING: DOPPLER

• What is Doppler?

- The whistle of the train coming from opposite direction sounds different with the train passing by.
 - The pitch of the sound (determined by sound frequency) is changing.
- Rx signal frequency will change if the Rx is moving w.r.t. Tx.
- Signal frequency change due to the relative movement between Tx and Rx is called Doppler effects.

T = 0.5s

FADING: DOPPLER

• Consider Tx sends out a sinusoid with frequency 1Hz

- If Rx moves toward Tx, the signal observed by Rx will have a shorter period → frequency increased
- If Rx moves away from Tx, the signal observed by Rx will have a longer period → frequency decreased

• The amount of frequency change is called **Doppler shift**

- Doppler shift depends on
 - Relative speed between Tx and Rx
 - The frequency of the original signal

FADING: DOPPLER

• Relationship between speed and Doppler shift

$$\Delta f = \frac{v}{\lambda} \cos \theta$$

 \mathcal{V} : relative speed λ : wavelength

• Maximum Doppler shift:

$$f_D = \frac{v}{\lambda}$$

• **Example:** find the maximum Doppler shift of 900MHz system with mobile speed 120km/Hr

- At given frequency
 - $-v \uparrow \rightarrow f_D \uparrow \rightarrow$ channel changes more rapidly

FADING: IMPULSE RESPONSE

• The impulse response of fading is time-varying!

- f_c : system operating frequency (e.g. 900MHz, 1.8GHz)
- t: the time variation (both amplitude and phase changes with respect to time)
- $-\tau$: relative delay between multipath components
- $\varphi_n(t)$: depends on path distance and Doppler shift $(2\pi f_D t)$

FADING: IMPULSE RESPONSE

Complex baseband representation

$$c(t,\tau) = \sum_{n=1}^{N} \alpha_n(t) \operatorname{Re}\left[e^{j2\pi f_c t + \varphi_n(t)}\right] \times \delta(\tau - \tau_n)$$
$$= \operatorname{Re}\left\{e^{j2\pi f_c t}\left[\sum_{n=1}^{N} \alpha_n(t)e^{j\varphi_n(t)} \times \delta(\tau - \tau_n)\right]\right\}$$

$$h(t,\tau) = \sum_{n=1}^{N} \alpha_n(t) e^{j\varphi_n(t)} \times \delta(\tau - \tau_n)$$

- Maximum delay spread
 - The time interval between the first multipath and the last multipath

$$\tau_{\rm max} = \tau_{\rm N} - \tau_{\rm 1}$$

FADING: FLAT FADING

• Flat fading

- Maximum delay spread $\tau_{\rm max}$ << system symbol period Ts
- Relative to the symbol period, all the multipath components arrive at almost the same time \rightarrow Doesn't need to consider the delay variable τ

$$h(t) = \sum_{n=1}^{N} \alpha_n(t) e^{j\varphi_n(t)} = \sum_{n=1}^{N} \alpha_n(t) \cos[\varphi_n(t)] + j \cdot \sum_{n=1}^{N} \alpha_n(t) \sin[\varphi_n(t)]$$

- Inphase component

$$h_I(t) = \sum_{n=1}^N \alpha_n(t) \cos[\varphi_n(t)]$$

– Quadrature component

$$h_{\mathcal{Q}}(t) = \sum_{n=1}^{N} \alpha_n(t) \sin[\varphi_n(t)]$$

FADING: FLAT FADING

$h(t) = h_I(t) + j \cdot h_Q(t)$

• Both $h_1(t)$ and $h_2(t)$ are the sum of many multipath components

- Each multipath component is a random process
- $h_{i}(t)$ and $h_{Q}(t)$ are random processes

• Central limit theorem

- The sum of N independent and identically distributed (i.i.d.) random variables tends to Gaussian distribution when N is large enough.
- Based on central limit theorem, at time time *t*, both *h*₁(t) and *h*₂(t) are Gaussian distributed!

FLAT FADING: RAYLEIGH FADING

• If there is no LOS between Tx and Rx

- $h_1(t)$ and $h_2(t)$ are zero-mean Gaussian distributed ~ $N(0, \sigma^2)$
- The amplitude (or envelope) of h(t)

$$h(t) \Big| = \sqrt{h_I^2(t) + h_Q^2(t)}$$

- The fading envelope |h(t)| follows Rayleigh distribution

$$f_{|h(t)|}(z) = \frac{z}{\sigma^2} \exp\left(-\frac{z^2}{2\sigma^2}\right)$$

- Average power of fading

$$E\left|\left|h(t)\right|^{2}\right| = E\left[h_{I}^{2}(t)\right] + E\left[h_{Q}^{2}(t)\right] = 2\sigma^{2}$$

FLAT FADING: RICIAN FADING

• If there is LOS component

- $h_1(t)$ and $h_2(t)$ are non-zero-mean Gaussian distributed ~ $N(s, \sigma^2)$
- The fading envelope

$$\left|h(t)\right| = \sqrt{h_I^2(t) + h_Q^2(t)}$$

follows Rician distribution

FLAT FADING: TIME DOMAIN CORRELATION

• The time domain correlation of *h*(t) is

$$R_h(\alpha) = E[h(t+\alpha)h^*(t)] = P_h \cdot J_0(2\pi f_D \alpha)$$

- $J_{\theta}(x)$: zero-order Bessel function of the first kind

- Generally speaking, for given time interval α
 - Larger speed $v \rightarrow \operatorname{larger} f_D \rightarrow \operatorname{smaller} |R_h(\alpha)|$.

FLAT FADING: POWER SPECTRAL DENSITY

• Power spectral density is the Fourier transform of auto-correlation function.

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

SIMULATOR

- Flat Rayleigh fading is a random process
 - At any time instant t, $|h(t)| = \sqrt{h_I^2(t) + h_Q^2(t)}$ is Rayleigh distributed.
 - Both the real part $h_I(t)$ and the imaginary part $h_Q(t)$ are zero mean Gaussian distributed.
 - The auto-correlation function must satisfy

$$R(\tau) = E[h(t+\tau)h^*(t)] = J_0(2\pi f_D \tau)$$

SIMULATOR

- How to generate flat Rayleigh fading with computer program?
 - Method 1: Filtered Gaussian noise
 - Rely on low-pass filter to introduce the time-domain correlation among symbols

- The low-pass filter is hard to design.

SIMULATOR

• Method 2: Sum-of-sinusoid

$$h_{I}(nT_{s}) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \cos\left\{2\pi f_{D} \cos\left[\frac{(2m-1)\pi + \theta}{4M}\right] \cdot nT_{s} + \alpha_{m}\right\}$$
$$h_{Q}(nT_{s}) = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \sin\left\{2\pi f_{D} \cos\left[\frac{(2m-1)\pi + \theta}{4M}\right] \cdot nT_{s} + \beta_{m}\right\}$$
$$h(nT_{s}) = h_{I}(nT_{s}) + j \cdot h_{Q}(nT_{s})$$

 $\theta, \alpha_m, \beta_m$: uniformly distributed in $[0, 2\pi]$

M: a constant. The larger, the more accurate. Usually 8 or 16.

$$T_s$$
 : time duration between samples.

 $\mathbf{h} = \mathbf{Rayleigh}(\mathbf{N}, \mathbf{fd}, \mathbf{Ts})$ $\mathbf{h} = [h(0T_s), h(1Ts), h(2Ts), \cdots, h((N-1)Ts)]$

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

CLASSIFICATION

• Fading

- Amplitude and phase distortions of transmitted signal

Classification criterions

- Scale
 - Large scale fading, small scale fading
- Small scale fading
 - Flat fading v.s. frequency selective fading
 - Fast fading v.s. slow fading
 - Rayleigh fading v.s. Rician fading

CLASSIFICATION: SCALE

• Large scale fading

- Path loss (signal power loss as a function of distance)
 - Due to distance between Tx and Rx, reflection of large objects
- Shadowing
 - Obstruction from large objects
- Small scale fading
 - Amplitude and phase distortions from local objects → highly sensitive to locations of MS
 - Due to the superposition of multiple electromagnetic waveforms
 - Caused by two independent propagation mechanisms
 - (1) time dispersion (delay spread)
 - Determines frequency selective or flat
 - (2) frequency dispersion (Doppler spread)
 - Determines fast or slow

CLASSIFICATION: FAST FADING V.S. SLOW FADING

- The time domain variation of fading is determined by maximum Doppler spread *f*_D
 - Doppler shift: signal frequency change due to relative movement between Tx and Rx.
 - Larger speed $v \rightarrow \text{larger } f_D \rightarrow \text{channel varies faster.}$
- Coherence time *T*_c
 - The time period over which the channel is strongly correlated (didn't change too much)
 - Inverse proportional to f_D

$$T_c \approx \frac{1}{2f_D}$$

CLASSIFICATION: FAST FADING V.S. SLOW FADING

• System symbol period v.s. signal bandwidth

$$0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

$$\rightarrow I \quad \leftarrow \text{Symbol Period} = T_s$$

Signal BW = $B_s \approx 1 / T_s$

- Fast fading
 - If Ts > Tc, or $Bs < f_D$
 - Ts > Tc: channel changes within one symbol period \rightarrow fast fluctuation
- Slow fading
 - If $Ts \ll Tc$, or $Bs \gg f_D$
 - $Ts \ll Tc$: channel keeps constant during several symbol periods \rightarrow slow amplitude fluctutation.

(Coherence time *Tc*, Doppler spread *f*_D) is related to fast fading or slow fading

CLASSIFICATION: FAST FADING V.S. SLOW FADING

- Example: A cell phone user is in a vehicle moves at a speed of 120km/hr. The carrier frequency is 1800MHz.
 - (a) What is the maximum Doppler spread?
 - (b) What is the coherence time of the channel?
 - (c) The symbol period of a system is 3ms. Is the system experiencing fast fading or slow fading?
 - (d) The symbol rate of IS-136 system is 24.3ksym/s. Is the system experiencing fast fading or slow fading?

CLASSIFICATION: FLAT V.S. FREQUENCY SELECTIVE

• Maximum delay spread

– The time interval between the first multipath and the last multipath

$$\tau_{\rm max} = \tau_N - \tau_1$$

• Mean delay spread

$$\overline{F} = \sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot \tau_n$$

$$P_n : \text{the average power of the } n\text{th multipath}$$

$$P_{total} = \sum_{n=1}^{N} P_n : \text{ the total power of the all multipath}$$

• Root mean square (rms) delay spread

$$\tau_{rms} = \sqrt{\sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot (\tau_n - \overline{\tau})^2} = \sqrt{\sum_{n=1}^{N} \frac{P_n}{P_{total}} \cdot \tau_n^2 - \overline{\tau}^2}$$

CLASSIFICATION: FLAT V.S. FREQUENCY SELECTIVE

• Coherence bandwidth *Bc*

- The bandwidth over which the channel is strongly correlated (didn't change too much)
 - The spectrum over coherence bandwidth is almost "flat"
- Inverse proportional to rms delay spread

(Coherence bandwidth *Bc*, rms delay spread τ_{rms}) is related to fast fading or slow fading

CLASSIFICATION: FLAT V.S. FREQUENCY SELECTIVE

• Flat fading

- If $Bs \ll Bc$, or $Ts \gg \tau_{rms}$
- Bs << Bc: signal bandwidth << channel bandwidth
- $Ts >> \tau_{rms}$: relative arrival time between multipath components is negligible
 - Doesn't need to consider delay variable $h(t,\tau) \rightarrow h(t)$

- Frequency selective fading f_c
 - If Bs >> Bc, or $Ts << \tau_{rms}$
 - Bs >> Bc: signal bandwidth >> channel bandwidth
 - Signal spectrum will be seriously distorted by channel!
 - Ts << τ_{rms} : symbol period smaller than rms delay spread
 - The relative arrival time between the multipath components is no longer negligible!

• Frequency selective fading

- rms delay spread τ_{rms} >> system symbol period Ts
 - The relative arrival time between the multipath components is no longer negligible!
- The *N* multipath components are divided into *L* clusters
 - Within each cluster, there are still many multipath components
 - Multipath components belonging to the *l*th cluster arrives at approximately the same time τ_l .

$$h(t,\tau) = \sum_{l=1}^{L} h_l(t) \times \delta(\tau - \tau_l) = \sum_{l=1}^{L} \left[h_{ll}(t) + j h_{Ql}(t) \right] \times \delta(\tau - \tau_l)$$

- $-h_i(t)$ is the sum of all the multipath components within the same cluster
 - Resolvable multipath component
- The inphase and quadrature components of $h_i(t)$ are Gaussian distributed.
- The frequency selective fading can be viewed as the combination of multiple flat fading
 - Each branch (cluster) $h_i(t)$ can be viewed as flat fading

- Each branch of frequency selective fading can be viewed as a flat fading
 - All the properties discussed for flat fading can be directly applied to each branch of frequency selective fading
 - E.g. Inphase and quadrature components are Gaussian distributed.
 - fading envelope: Rayleigh v.s. Rician

• Power delay profile

The average power of each resolvable multipath component, w.r.t. the relative delay

• Example:

- (a) Find the maximum delay spread, mean delay spread, and rms delay spread of the following power delay profile.
- (b) What is the coherence bandwidth of the channel?
- (c) For a system with symbol rate 0.5KHz, is this a flat fading or frequency selective fading?
- (d) For a system with symbol rate 1000KHz, is this a flat fading or frequency selective fading?

Relative delay (ms)	0	1
Average power	0.4	0.6

CLASSIFICATION: RAYLEIGH V.S. RICIAN

• Fading envelope

$$\left|h(t)\right| = \sqrt{h_I^2(t) + h_Q^2(t)}$$

• Rayleigh fading

- Fading envelope |h(t)| follows Rayleigh distribution
- Non LOS (no dominant multipath components)

Rician fading

- Fading envelope |h(t)| follows Rician distribution
- One dominant component (LOS) along with weaker multipath signals

OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Simulation model
- Channel classifications
- Noise and interference

NOISE

• Noise and interference

- Unwanted electrical signals interfering with the desired signal
- Arises from outside natural or artificial sources
 - Artificial source: noise from automobile ignition, signal from other communication system, etc.
 - Natural source: thermal noise, atmospheric disturbances.

• Noise v.s. fading

- Noise arises from outside sources
 - fading arises from the signal propagation itself
- Noise is added to the desired signal → the desired signal is buried by noise (noise only has negative effects on signal).
 - Fading results in signal power fluctuation → signal power may become larger or become smaller (fading might benefit system performance).
- Noise is present in all communication systems.
 - Fading is unique to wireless communications.

NOISE: SIGNAL TO NOISE RATIO

• Signal to noise ratio (SNR):

- the ratio of the signal power to the noise power at the receiver.
- SNR = S/N, with S being the signal power, and N being the noise power observed by the receiver.
- High SNR → Signal is strong, and noise is weak → Better communication quality.
- Improve SNR \rightarrow Improve Tx power \rightarrow More power consumption

High SNR

Low SNR

NOISE: THERMAL NOISE

• Thermal noise

- At the temperature above 0K (absolute temperature, =-273 centigrade), the electrons inside the conductor will move randomly.
- This random movement of electrons will cause random voltage fluctuations of the transmitted signals.
- Temperature increase → electrons movement becomes stronger → noise power increase

NOISE: THERMAL NOISE

• Thermal noise is a random process

- At any time instant, the random voltage due to thermal noise follows Gaussian distribution with zero mean.
 - The random voltage is caused by the sum of the motions of a large number of electrons (central limit theorem).
- The noise samples at any two different time instants are uncorrelated. Autocorrelation function

NOISE: THERMAL NOISE

• Power spectral density

- Fourier transform of autocorrelation function

Additive White Gaussian Noise (AWGN)

NOISE: COCHANNEL INTERFERENCE

• Cochannel interference (CCI)

- Due to frequency reuse, cells using the same frequency range will generate interference with each other.
- Unique to cellular system.

