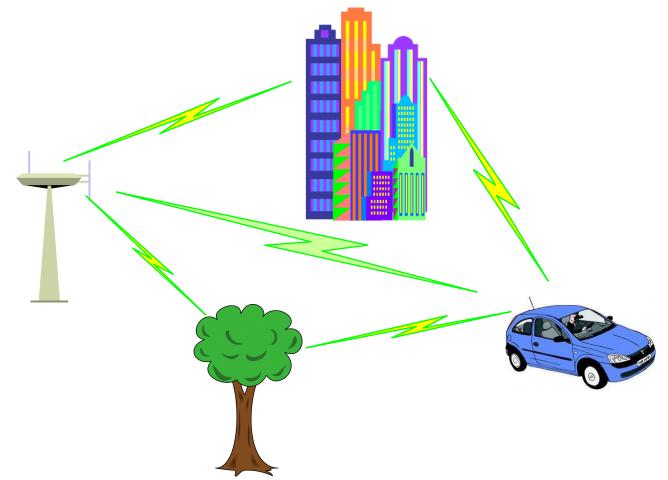
Department of Electrical Engineering University of Arkansas



# ELEG 5693 Wireless Communications Propagation and Noise Part I


Dr. Jingxian Wu wuj@uark.edu

# OUTLINE

- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Channel classifications
- Noise and interference
- Simulation model



#### **CHANNEL: PROPAGATION ENVIRONMENT**





## **CHANNEL: PROPAGATION MODES**

#### • Free-space (line-of-sight)

- There is a clear transmission path between transmitter (Tx) and receiver (Rx).
- E.g. satellite

### Reflection

- The bouncing of electromagnetic waves from surrounding objects
- Size of reflecting objects must be large compared to the wavelength of signal
- Reflecting surface must be smooth compared to the wavelength of signal
- E.g. ground, building, walls, windows, lakes



# CHANNEL: PROPAGATION MODES (CONT'D)

### • Diffraction

- The bending of electromagnetic waves around objects (such as buildings), or through objects (such as trees).
- Due to diffraction, signals can propagate
  - Around curved surface of Earth
  - Beyond LOS horizon
  - Behind obstructions

### Scattering

- Electromagnetic waveforms incident upon rough or complex surfaces are scattered in many directions
  - Relfection: smooth surface, one direction
- Refraction (not common in terrestrial wireless communication).
  - Electromagnetic waves bend as they move from one medium to another.



## CHANNEL

**Channel:** a collection of propagation effects and other signal impairments caused by the environments

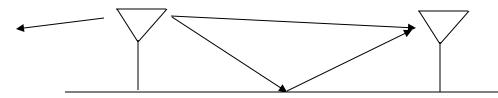
- Wireless channel: propagation, noise and interference
  - Propagation effects: line-of-sight, reflection, diffraction, scattering
    - Induced by the transmission of desired signals itself
    - Impairments: large scale fading (path loss, shadowing), small scale fading
    - Unique to wireless communication
  - Noise and interference: unwanted electrical signals interfering with desired signal.
     Present in all
     Thermal poise (movements of electrons)
    - Thermal noise (movements of electrons)
    - Automobile ignition, electrical machinery, etc:
    - Interferences from other users operating on the same frequency.



systems

# OUTLINE

Wireless channel


### Path loss

- Shadowing
- Small scale fading
- Channel classifications
- Noise and interference
- Simulation model



## **PATH LOSS**

- Path loss: the power loss during signal propagation from Tx to Rx
  - Only a portion of the power from Tx will be captured by the receiver.



• Path loss is defined as the ratio between the signal power at transmitter (*P*<sub>T</sub>) and signal power at receiver (*P*<sub>R</sub>).

$$L_p = \frac{P_T}{P_R}$$

$$L_p(dB) = 10\log_{10}\frac{P_T}{P_R} = 10\log_{10}P_T - 10\log_{10}P_R$$



# **PATHLOSS: MODELS**

#### Free-space path loss model

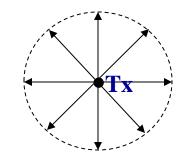
- Clear, unobstructed LOS.
- Doesn't consider surrounding objects.
- Highly simplified model
- E.g. satellite

### Ray-tracing models

- Consider the effects of reflection, diffraction from surrounding environment
- More complex, depends on site geometry

#### General model

- Simple flexible mathematical model
- Captures the essence of path loss under various conditions
- Good for high level analysis




## **PATHLOSS: FREE-SPACE**

#### Isotropic radiation

- Signal strength are equal in all directions
- Isotropic antenna: an antenna transmits equally in all directions.

 $\Phi_R =$ 



• At distance R from Tx antenna, the power per unit area

The surface area of a sphere with radius R

• Power at Rx

$$P_R = \frac{P_T}{4\pi R^2} A_e$$
Effective area of Rx antenna

 $P_T$ : Tx power



## **PATHLOSS: FREE-SPACE**

• Friis equation: path-loss equation for general antennas

$$P_{R} = P_{T}G_{T}G_{R}\left(\frac{\lambda}{4\pi R}\right)^{2}$$

- R: Distance between Tx and Rx. $G_T$ : Transmit antenna gain $\lambda = c / f$ : wavelength. $G_R$ : Receive antenna gain
- For system with fixed  $P_T$ ,  $G_T$  and  $G_R$

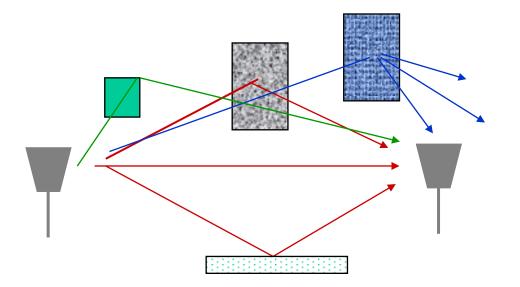
$$- R \uparrow \rightarrow P_R \downarrow$$
$$- f \uparrow \rightarrow \lambda \downarrow \rightarrow P_R \downarrow$$



## **PATHLOSS: FREE-SPACE**

#### • Example

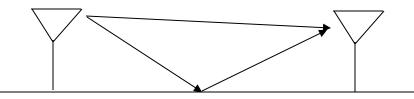
 In order to operate properly, a receiver must capture the signal power of at least -90dBm. Assuming a 100-miliwatt transmitter and free-space path loss. The antenna gain at Tx and Rx are 3dB. What is the service area radius of the Tx for a signal frequency of 800MHz?


Sol: 
$$P_T = 100mW$$
  
 $P_R(dBm) = 10\log_{10}\frac{P_R(mW)}{1(mW)} => P_R(mW) = 10^{P_R(dBm)/10} = 10^{-9}(mW)$   
 $G_T(dB) = G_R(dB) = 3dB => G_T = G_R = 10^{3/10} = 2$   
 $P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi R}\right)^2 => R = \frac{\lambda}{4\pi} \sqrt{\frac{P_T G_T G_R}{P_R}}$   
 $R = \frac{c}{4\pi f} \sqrt{\frac{P_T G_T G_R}{P_R}} = 18.9km$ 



## **PATHLOSS: RAY-TRACING MODELS**

#### Ray-tracing model


Besides LOS, also considers the effects of reflection, diffraction and scattering → considers the effects from each ray





## PATH LOSS: RAY TRACING MODEL

#### • Example: plane-earth reflection



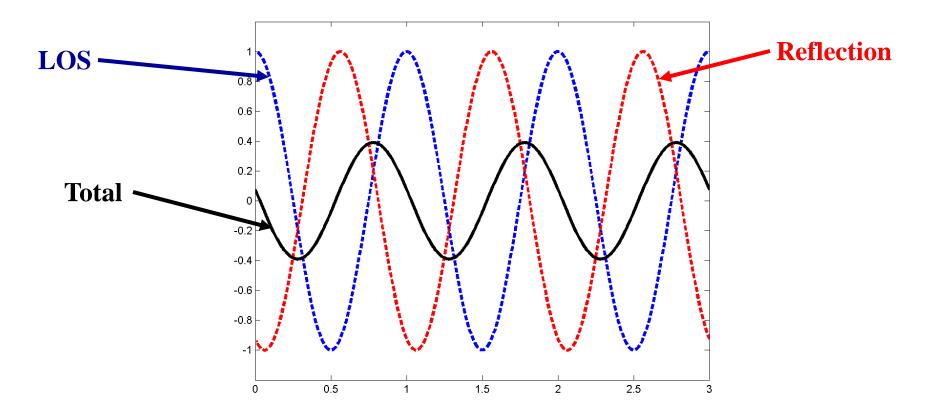
 $\Delta d$ :Distance between two paths

Rx signal from LOS:  $E_0(t) = A_0 \cos(2\pi f t + \theta)$ 

Rx signal from reflection:

$$E_r(t) = \rho A_0 \cos[2\pi f(t + \Delta d / c) + \theta]$$
  
=  $\rho A_0 \cos[2\pi ft + \psi + \theta]$ 

 $\psi = 2\pi f \Delta d / c = 2\pi \Delta d / \lambda$  : phase difference caused by distance difference


 $ho\,$  : due to reflection and distance difference

At the receiver: 
$$E_{total}(t) = E_0(t) + E_r(t)$$



## PATH LOSS: RAY TRACING MODEL

• The phase difference between the two rays will result in construction or destruction effects of the Rx signal



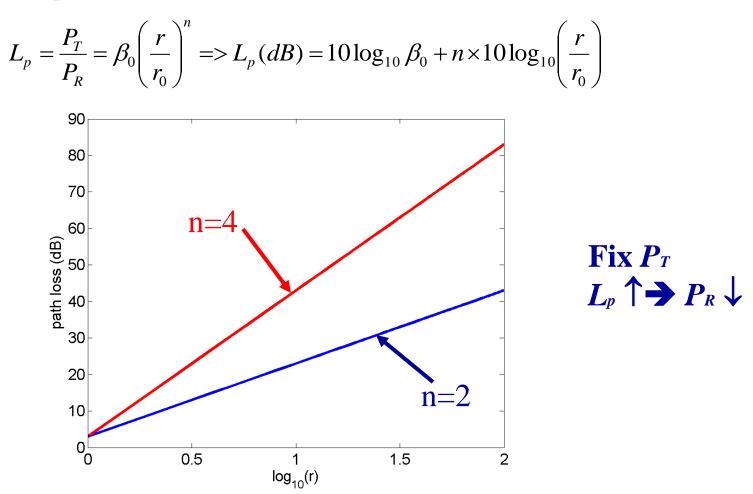


## **PATH LOSS: GENERAL MODEL**

• A general model capturing the essence of path loss in various environment

$$P_R = P_T \frac{1}{\beta_0} \left(\frac{r_0}{r}\right)^n$$

 $r_0$ : reference distance (typically 1 meter)


 $\beta_0$ : measured path loss at reference distance

- n: path loss exponent (can be obtained through measurement)
- r: distance between transmitter and receiver
- *n*: path loss exponent
  - $\mathbf{r} \uparrow \rightarrow P_R \downarrow$
  - The larger the value of *n*, the faster the Rx power falls off with the increase of distance.
  - Free space: n = 2; rolling rural: n = 3.5; suburban: 4; dense urban: 4.5



## **PATH LOSS: GENERAL MODEL**

• Usually represented in the unit of dB





## **PATH LOSS: GENERAL MODEL**

#### • Example:

- At a distance  $r_0 = 10$  meter from Tx, the measured power is  $P_T / \beta_0 = 2mW$ . The path loss exponent is n = 2.9. The appropriate operation of the receiver requires the signal power at receiver must be at lease -90mW. What is the service radius? (using the general path loss model)

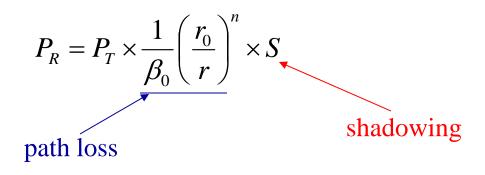
Sol.

$$P_{R}(dBm) = 10\log_{10}\frac{P_{R}(mW)}{1(mW)} \Longrightarrow P_{R}(mW) = 10^{P_{R}(dBm)/10} = 10^{-9}(mW)$$

$$r = r_0 \sqrt[n]{\frac{(P_T / \beta_0)}{P_R}} = 10^{2.9} \sqrt{\frac{2mW}{10^{-9}mW}} = 16.1 km$$



# OUTLINE


- Wireless channel
- Path loss
- Shadowing
- Small scale fading
- Channel classifications
- Noise and interference
- Simulation model



### SHADOWING

#### • Shadowing:

- Caused by large obstructions that are distant from MS
- Analogy: the shadow of light due to mountain.
- Effects of shadowing is random due to random # and type of obstructions.
- The existence of shadowing is verified through field measurement.
- Consider the effects of path loss and shadowing



S : models the effects of shadowing. Random variable.

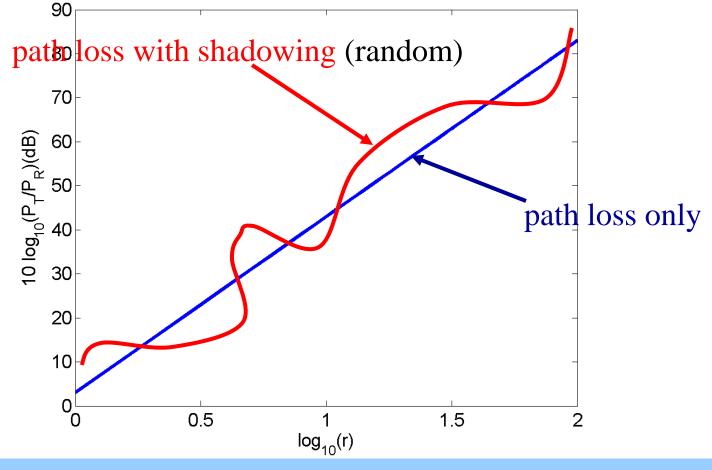


### SHADOWING

#### • dB representation

$$10\log_{10} P_R = 10\log_{10} \frac{P_T}{\beta_0} + n \times 10\log_{10} \left(\frac{r_0}{r}\right) + 10\log_{10} S$$

•  $S(dB) = 10\log_{10} S$  : follows Gaussian distribution (normal distribution)


$$f_{S(dB)}(x) = \frac{1}{\sqrt{2\pi\sigma_{dB}}} \exp\left(-\frac{(x-m_{dB})^2}{2\sigma_{dB}^2}\right)$$

S(dB) follows normal distribution  $\rightarrow$  the log of *S* follows normal distribution  $\rightarrow$  The distribution of *S* is called lognormal distribution

Shadowing is called lognormal shadowing



### SHADOWING



combined effects of path loss and shadowing (red curve)

