
Department of Electrical Engineering
University of Arkansas

ELEG 5693 Wireless Communications

Math Review

Dr. Jingxian Wu

Jingxian.wu@sonoma.edu



2

OUTLINE

• Signals and System (Fourier analysis) 

• Random variables and random process 
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CONCEPT OF FREQUENCY

• Frequency is the measurement of the number of times that 

a repeated event occurred in a unit time (1 second).

– Frequency measures how fast a signal can change within a unit period of 

time (or the measurement of the rate of change).

– High frequency  the signal changes fast

• In signal processing, frequency is defined based on sinusoid 

signal  number of cycles per second.

– Each sinusoid signal is uniquely associated with a single frequency 

based on its rate of change. 

f = 0 Hz

f = 1 Hz

f = 3 Hz

1 second
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TIME DOMAIN SIGNAL

• Sinusoid Signal

– f : frequency. in the unit of Hz (1/second)

– A : amplitude. maximum strength in signal, usually in unit of volts

– : phase. relative position in time

– t : time. in the unit of second

– T : period. Time for one cycle or one repetition, T=1/f.

– : Wavelength. Distance of the signal waveform propagated in one period T.

• , where v is the speed of the signal. In vacuum, it is the speed of light.
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THEORY: FREQUENCY DOMAIN SIGNAL

• Periodic signal can be written as the summation of a series of sinusoids 

(Fourier Series)

– Each sinusoid component has a unique frequency

– Each sinusoid component is called a “harmonic” of the original signal.

– There is a one to one relationship between a signal and its Fourier series.

– With Fourier series, we can represent the signal in the “Frequency Domain”
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FOURIER TRANSFORM

Let g(t) be a non-periodic deterministic signal, expressed as 

function of t. Its frequency domain representation, G(f) , can be 

obtained from Fourier transform.
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Fourier transform 

Inverse Fourier transform 
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FOURIER TRANSFORM

• Example 1:

Find the Fourier transform of , t > 0

Sol. 

)exp()( ttg 
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FOURIER TRANSFORM
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UNIT IMPULSE FUNCTION

• Unit impulse function (delta function)
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• The output of the LTI system is the convolution of input x(t) 

with the channel impulse response h(t)

LINEAR TIME INVARIANT (LTI) SYSTEM

h(t) )(ty)(tx

• Time domain convolution  frequency domain multiplication
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LTI

• Example:

)()( ttx 

h(t) )(ty)(tx )(tx

0),exp()(  ttth ?)( ty

Method 1:

Method 2:
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CORRELATION

• The cross correlation of two deterministic, complex-valued 

function a(t) and b(t) is defined as





 dttbtaRab )()()( * 

• The auto-correlation of one deterministic, complex-valued 

function a(t) is defined as
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ENERGY

• The energy of a signal s(t) is defined as

– If a signal has finite energy, the signal is called energy signal.

– E.g. 
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• Relationship between energy and auto-correlation function



14

POWER

• The power of a signal s(t) is defined as

– If a signal has finite power, the signal is called power signal

– For periodic signal with period T

– E.g.
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• is called the energy spectrum density (ESD) of the signal

– ESD represents the energy distribution in the frequency domain.

PARSEVAL’S THEOREM & ESD
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OUTLINE

• Linear system theory (Fourier analysis) (Appendix A)

• Random variables and random process (Appendix C)
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DISCRETE RANDOM VARIABLES

• Example 1: coin toss

– Define random variable (RV) X.

• X = 0: coin head

• X = 1: coin tail

– Probability Mass Function (PMF): 

• P(X = 0) = 0.5, P(X = 1) = 0.5 

• Example 2: pick 1 ball from 10 balls (2 black, 3 white, 5 red)

– Define RV X

• X = 0: a black ball is picked

• X = 1: a white ball is picked

• X = 2: a red ball is picked

– PMF: 
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CUMLATIVE DISTRIBUTION FUNCTION (CDF)

• Example 1: toss coin

)(P)( xXxFX 
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• Example 2: pick 1 balls from 10 balls
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CONTINUOUS RV

• RV X can take continuous values

– E.g.: X represents the average temperature

• CDF

• Probability density function (pdf)
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PDF AND CDF

• Relationship between pdf and CDF
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CDF AND PDF

• Example:

The pdf of uniform distribution is:

The corresponding CDF is:  

Let a = 0, b = 1, the probability that X is in the range of [0.5, 0.6] is:

1
( ) ,    Xf x a x b

b a
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CDF AND PDF

a

1/(b-a)

b

pdf of uniform distribution

b

0

1

cdf of uniform distribution

a
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EXPECTATION (MEAN)

• Discrete-time RV

– Weighted sum

( ) ( )X i i

i

m E X x P X x  

• Continuous-time RV

( ) ( )X Xm E X yf y dy



  

• Example: find the expectation (mean) of the uniform distribution
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VARIANCE

• Discrete RV
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• Continuous RV
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VARIANCE

• Example: find the variance of the uniform distribution

– Sol:

1
( ) ,    Xf x a x b

b a
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GAUSSIAN DISTRIBUTION
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• The pdf of Gaussian distribution is

– The pdf is determined by two parameters:

 XEm 

 2XmXE 

mean

standard deviation

• The sum of Gaussian RVs is still Gaussian distributed
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GAUSSIAN DISTRIBUTION

mean
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JOINT DISTRIBUTION

• Consider two RVs, X, and, Y. The joint CDF of X and Y is

),(),(, yYxXPyxF YX 

• Joint pdf
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• Given the joint pdf, we can find the marginal pdf of each RV
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JOINT DISTRIBUTION

• Example:

– Sol:



 


otherwise,0

10,10,
),(,

yxyx
yxf YX

?)(?,)(  yfxf YX

• Independent

– If                                                   , then X and Y are independent.)()(),(, yfxfyxf YXYX 
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CORRELATION

• The correlation of two RVs X and Y is calculated as

   







 dxdyyxfxyXYE XY ),(

• The covariance of two RVs X and Y is

    YXYX mmYExEmYmXE  ][][

• If                                           , then X and Y are uncorrelated.  )()( YEXEXYE 

If X and Y are independent  they must be uncorrelated.

Proof: 
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CORRELATION

• Example:

– Sol:



 


otherwise,0

10,10,
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Are X, Y uncorrelated?
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RANDOM PROCESS

• Random process X(t): an RV changes w.r.t. time

– X(t) is a function of time t

– At any time instant     ,               is a random variable. 0t )( 0tX

Each realization is called a 

sample function of the random

process

Time (ms)

At each time instant, we have a RV

)]([)( 00 tXEtmX 

mean: (ensemble average)
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RANDOM PROCESS

• Let         be a random process, 

at time        , we have a RV              ;

at time        , we have another RV             .

Then we have the joint distribution functions
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AUTO-CORRECTION FUNCTION (ACF)

• Let         be a random process, 

at time        , we have a RV              ;

at time        , we have another RV             .

Then we can calculate the correlation of             and              :
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WIDE-SENSE STATIONARY (WSS)

• A random process is wide-sense stationary (WSS) if the following two 

conditions are satisfied

XX mtXEtm  )]([)(

)(),(),( 212121 ttRhthtRttR XXX 

1.

2.

– The first condition states that the mean of the random process is independent 

of time.

– The second condition states that the auto-correlation function is only 

dependent on the time difference between the two RVs, and it’s independent 

of the starting time.

• The autocorrelation function of WSS process  is usually represented as

 )()()]()([ 2121 htXhtXEtXtXE 
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POWER SPECTRUM DENSITY

• The power spectrum density (PSD) of WSS random process is defined 

as the Fourier transform of the auto-correlation function of the 

process
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• Power spectrum density represents the power distribution in the 

frequency domain.
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RANDOM PROCESS PASS THROUGH LTI

• If x(t) is a WSS random process, then y(t) is a WSS 

random process as well.

h(t) )(ty)(tx

)()()(
2

fSfHfS XY 

The relationship between PSD of y(t) and PSD of x(t)
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The relationship between mean of y(t) and mean of x(t)


