

Department of Electrical Engineering University of Arkansas

ELEG 5663 Communication Theory Ch. 6 Coding: PART I

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

INTRODUCTION

ARKANSAS

INTRODUCTION

Channel Coding

- Channel coding with structured sequence
 - Protect the information from channel distortions by adding structured redundancy
 - Examples:
 - Cyclic Redundancy Check (CRC), Linear Block Code, Convolutional Code (CC), Turbo Code, Low Density Parity Check (LDPC), etc.

• Coding can only be used in digital communication systems.

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

ERROR CONTROL

• Error control

- Error detection and retransmission:
 - detect the presence of errors at the Rx by using the structured sequence
 - Rx notifies Tx about the error
 - Tx retransmit the message
 - Requires a two-way link between Tx and Rx
- Forward error correction (FEC)
 - The Rx can correct the errors by using the structured sequence
 - Only a one-way link is required.

ERROR CONTROL: ARQ

- Automatic Retransmission Query (ARQ)
 - When the Rx detects an error, it will require the Tx to retransmit the information.
 - Such an error control procedure is called ARQ.
 - 3 types of ARQ:
 - Stop-and-wait
 - Continuous ARQ with pull back
 - Continuous ARQ with selective repeat

Stop-and-wait ARQ

 The Rx waits for an acknowledgement (ACK) of each transmission before transmitting the next packet.

ERROR CONTROL: ARQ

• Continuous ARQ with pullback

- The Tx transmits continuously without waiting for a ACK
- In case of NAK (negative ACK), the Tx will retransmit the error packet and all the subsequent packets

- Continuous ARQ with selective repeat
 - In case of NAK, the Tx will only retransmit the error packet
 - More complicated operation at the Rx (re-order packets, memory)

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

STRUCTURED SEQUENCE

Channel coding

- Protect the transmitted information by adding redundancy.
- E.g. repetition code:
 - '0': '000'
 - '1': '111'

• Error detection

- Include only enough redundant information such that the Rx can detect an error by looking at the Rx data.
 - E.g. repeat '1' 2 times. Tx (1 1), Rx (0 1) → Receiver knows there is an error, but couldn't guess what is transmitted
 - Send back Negative Acknowledgement (automatic-repeat query: ARQ)
- Error correction
 - Include enough redundant information such that the Rx can recover the original information by looking at the Rx data.
 - E.g. repeat '1' 3 times. Tx (1 1 1), Rx (0 1 1) → Receiver will guess that (1 1 1) is transmitted → detect '1'
 - Majority decision rule \rightarrow minimize the probability of error.

STRUCTURED SEQUENCE

• Linear block code (LBC)

- Every k bits of information corresponds to a codeword of length n bits
 - E.g. repetitionon code 1-bit of information, 3-bit codeword
- n > k: there are (n-k) bits of redundancy
- The code is called: (n, k) linear block code
- Definition:
 - code rate: r = k/n
 - Measures the efficiency of the code (1-*r*: the percentage of redundancy)
 - E.g.: (3, 1) repetition code: r = 1/3. (2, 1) repetition code: r = 1/2.

STRUCTURED SEQUENCE: SINGLE PARITY CHECK

• Single parity check

- Adding a single parity bit to a block of data bits
- Code rate: r = k/(k+1)
- Odd parity: add a parity bit such that the summation of all the bits yields an odd result (odd number of ones)

 $\underline{1} 0 1 0 1 0$ $\underline{0} 0 0 1 1 1$

- Even parity: add a parity bit such that the summation of all the bits yields an even result (even number of ones)

 $\underline{0} 0 1 0 1 0$ $\underline{1} 0 0 1 1 1$

- Error detection only
- Will the code be able to detect even number of errors?

STRUCTURED SEQUENCE: RECTANGULAR CODE

• Rectangular code (product code)

- Form a rectangle of message bits of *M* rows and *N* columns.
- A horizontal parity check is appended to each row
- A vertical parity check is appended to each column
- Code rate:

$$=\frac{MN}{(M+1)(N+1)}$$

– Any single bit error will cause:

r

- A parity check error in a row
- A parity check error in a column
- The single bit error can be detected and corrected!
- Product code can detect any 1 bit error

STRUCTURED SEQUENCE: WHY ERROR CORRECTION?

- Trade-off 1: Error performance v.s. bandwidth
 - fixing SNR and data rate
 - Error correction code \rightarrow smaller BER
 - Error correction code → More bandwidth is needed to transmit (information bits + redundancy bits)

 $\frac{P_r}{N} = \frac{E_b}{N_0} \frac{R}{W}$

STRUCTURED SEQUENCE: WHY ERROR CORRECTION?

• Trade-off 2: power v.s. bandwidth

- Fixing BER and data rate
- Error correction code \rightarrow smaller $E_b / N_0 \rightarrow$ smaller P_r

 Coding gain: at a given BER, coding gain is the difference in Eb/N0 between coded and uncoded system

$$G(dB) = \left(\frac{E_b}{N_0}\right)_u dB - \left(\frac{E_b}{N_0}\right)_c dB$$

 $\frac{E_b}{N_0} = \frac{P_r}{N_0} \frac{1}{R}$

STRUCTURED SEQUENCE: WHY ERROR CORRECTION?

• Trade-off 3: data rate v.s. bandwidth

- Fix BER and Tx power
- Error correction code \rightarrow smaller $E_b / N_0 \rightarrow$ bigger R

$$\frac{E_b}{N_0} = \frac{P_r}{N_0} \frac{1}{R}$$

 Error correction code → More bandwidth is needed to transmit (information bits + redundancy bits)

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

LBC: PREPARATIONS

• Binary operations

- 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0
- 0 x 0 = 0, 0 x 1 = 0, 1 x 0 = 0, 1 x 1 = 1

• Matrix operations

- The product of an $m \ge k$ matrix and $k \ge n$ matrix
 - Has a size of *m x n*

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} b_{11} b_{12} \\ b_{21} b_{22} \\ b_{31} b_{32} \end{bmatrix} \qquad \mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{bmatrix} c_{11} c_{12} \\ c_{21} c_{22} \\ c_{31} c_{32} \end{bmatrix}$$

$$c_{mn} = a_{m1}b_{1n} + a_{m2}b_{2n} + a_{m3}b_{3n}$$

$$c_{21} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31}$$

LBC: AN EXAMPLE

• (7, 4) code

- 4-bit information, 7-bit codeword (3-bit redundancy)
- Information vectors
 - [0 0 0 0], [0 0 0 1], [0 0 1 0], [0 0 1 1], ..., [1 1 1 0], [1 1 1 1]
 - $2^{4} = 16$ possible information vectors $\rightarrow 16$ codewords
- Choose 16 codewords out of $2^7 = 128$ possible 7-bit combinations.
- Codeword vector \mathbf{c} is a linear function of information vector \mathbf{x}

$$\mathbf{c}_{(1\times7)} = \mathbf{x}_{(1\times4)} \cdot \mathbf{G}_{(4\times7)} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- The codeword for $[0\ 0\ 0\ 0]$:
- The codeword for [0 0 1 1]:
- The codeword for [0 1 0 1]:

LBC: GENERATION MATRIX

• (n, k) linear block code

- k-bit of information, n-bit of codeword
- Information vector (1 x k row vector)
- Codeword vector $(1 \times n \text{ row vector})$

$$\mathbf{x} = [x_1, x_2, \cdots, x_k]$$
$$\mathbf{c} = [c_1, c_2, \cdots, c_n]$$

- Linear relationship between information vector and codeword vector
- Generation matrix (size k x n matrix)

 $\mathbf{C} = \mathbf{X} \cdot \mathbf{G}$ $\mathbf{G} = \left[\mathbf{I}_{k \times k} \middle| \mathbf{P}_{k \times (n-k)} \right] = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ k \times k \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1(n-k)} \\ p_{21} & p_{22} & \cdots & p_{2(n-k)} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{n(n-k)} \\ k \times (n-k) \end{bmatrix}$

The first k bits of codeword are the same as information bits: systematic code

LBC: GENERATION MATRIX

• Generation matrix (cont'd) $\mathbf{c} = \mathbf{x} \times \mathbf{G} = \begin{bmatrix} x_1, x_2, \dots, x_k \end{bmatrix} \cdot \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_k \end{bmatrix} = x_1 \cdot \mathbf{g}_1 + x_2 \cdot \mathbf{g}_2 + \dots + x_k \cdot \mathbf{g}_k$ • Example $\mathbf{c}_{(1\times7)} = \mathbf{x}_{(1\times4)} \cdot \mathbf{G}_{(4\times7)} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

- The codeword for [0100]
- The codeword for [0101]

LBC: PARITY CHECK MATRIX

• Parity check matrix (an *n* x (*n*-*k*) matrix)

$$\mathbf{H}_{n\times(n-k)} = \begin{bmatrix} \mathbf{P}_{k\times(n-k)} \\ \mathbf{I}_{(n-k)\times(n-k)} \end{bmatrix}$$

• The product between G and H is an all zero matrix

$$\mathbf{G}_{k \times n} \times \mathbf{H}_{n \times (n-k)} = \begin{bmatrix} \mathbf{I}_{k \times k} \middle| \mathbf{P}_{k \times (n-k)} \end{bmatrix} \times \begin{bmatrix} \mathbf{P}_{k \times (n-k)} \\ \mathbf{I}_{(n-k) \times (n-k)} \end{bmatrix} = \mathbf{P}_{k \times (n-k)} + \mathbf{P}_{k \times (n-k)} = \mathbf{0}_{k \times (n-k)}$$

- For any valid codeword $c = x \times G$
 - Thus $\mathbf{c} \cdot \mathbf{H} = \mathbf{x} \cdot \mathbf{G} \cdot \mathbf{H} = \mathbf{x} \cdot (\mathbf{G} \cdot \mathbf{H}) = \mathbf{c} \cdot \mathbf{0} = \mathbf{0}$
 - Any valid codeword multiplied by \mathbf{H} is 0!
 - The receiver can use this to detect if there is an error during transmission.

LBC: PARITY CHECK MATRIX

$$- y = c + 0 = [0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1]$$

y H =

$$- y = c + e = [0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1] + [1 \ 0 \ 0 \ 0 \ 0 \ 0] = [1 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1]$$
$$y H =$$

LBC: SYNDROME DECODING

• Received vector

$$\mathbf{y} = \mathbf{c} + \mathbf{e}$$

codeword error vector

• Syndrome

$$\mathbf{s}_{1\times(n-k)} = \mathbf{y}_{1\times n} \mathbf{H}_{n\times(n-k)} = (\mathbf{c} + \mathbf{e}) \cdot \mathbf{H} = \mathbf{c} \cdot \mathbf{H} + \mathbf{e} \cdot \mathbf{H} = \mathbf{e} \cdot \mathbf{H}$$
$$\mathbf{s} = \mathbf{e} \cdot \mathbf{H}$$

- Syndrome: for each error pattern, there is a syndrome s
 - We can guess the error pattern **e** by looking at the syndrome!
- Error vector: n-bit $\rightarrow 2^n$ error vectors
- Syndrome: (n-k)-bit $\rightarrow 2^{n-k}$ syndromes
- There are more error vectors than syndromes!
 - Some error vectors might have the same syndrome
 - Given syndrome, there might be more error vectors → just randomly choose one.

LBC: SYNDROME DECODING EXAMPLE

• Example (5, 2) systematic code

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \qquad \mathbf{H} =$$

– codewords ______

Information: x	Codeword: c
00	00000
01	01011
10	10101
11	11110

- # of error vectors:
- # of syndromes

LBC: SYNDROME DECODING EXAMPLE

• Example (5, 2) systematic code

- Syndromes
 - 1. $e = [0 \ 0 \ 0 \ 0 \ 0] \Rightarrow s =$
 - 2. $e = [0 \ 0 \ 0 \ 0 \ 1] \rightarrow s =$
 - 3. $e = [0 \ 0 \ 0 \ 1 \ 0] \Rightarrow s =$
 - 4. $e = [0 \ 0 \ 1 \ 0 \ 0] \Rightarrow s =$
 - 5. $e = [0 \ 1 \ 0 \ 0 \ 0] \Rightarrow s =$
 - 6. $e = [1 \ 0 \ 0 \ 0 \ 0] \Rightarrow s =$
 - 7. $e = [1 \ 0 \ 0 \ 0 \ 1] \Rightarrow s =$
 - 8. $e = [1 \ 0 \ 0 \ 1 \ 0] \Rightarrow s =$
 - 9. $e = [1 \ 0 \ 1 \ 0 \ 0] \Rightarrow s =$
 - 10. $e = [1 \ 1 \ 0 \ 0 \ 0] \rightarrow s =$

LBC: SYNDROME DECODING EXAMPLE

• Example (5, 2) systematic code

- Syndrome table

syndromes	error vector
000	00000
001	00001
010	00010
$1 \ 0 \ 0$	00100
011	01000
101	10000
111	10010
110	11000

- It can correct all 1-bit error
- It can detect 2-bit error
- More than 2-bit error is beyond the capability of this (5, 2)-code

LBC: STANDARD ARRAY

• Standard array:

- Columns: all 2^k codewords
- Rows: all 2^{n-k} correctable error patterns
- Example: (5, 2) systematic code with

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- Each row is called a coset
- The first element in a row is called a coset leader
- All elements in the same coset have the same syndrome

LBC: SYNDROME DECODING

• Example (5, 2) systematic code

- Tx

$$x = [0 1] \Rightarrow c =$$

$$y = c + e = c + [0 \ 0 \ 1 \ 0 \ 0] =$$
- Rx

$$s = yH =$$

$$e =$$

$$c = y + e$$

$$x =$$
- Tx

$$x = [1 \ 1] \Rightarrow c =$$

$$y = c + e = c + [1 \ 0 \ 0 \ 1 \ 0] =$$
- Rx

$$s = yH =$$

$$e =$$

$$c = y + e$$

$$x =$$

LBC: SYNDROME DECODING

• Example (5, 2) systematic code

- Tx

$$x = [0 1] \Rightarrow c =$$

$$y = c + e = c + [0 \ 0 \ 1 \ 1 \ 0] =$$
- Rx

$$s = yH =$$

$$e =$$

$$c = y + e$$

$$x =$$
- Tx

$$x = [1 \ 1] \Rightarrow c =$$

$$y = c + e = c + [0 \ 0 \ 0 \ 0 \ 1] =$$
- Rx

$$s = yH =$$

$$e =$$

$$c = y + e$$

$$x =$$

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

PROPERTIES

• Design of LBC

- k bits of information: 2^k possible combinations
- n bits of codeword: 2^n possible combinations
- one-to-one relationship between (k-bit information, n-bit codeword)
 - Out of the 2^n possible combinations, we only need 2^k codewords
 - How to choose the 2^k codeword?
- E.g. (3, 1) LBC: choose 2 codewords out of 8 possible combinations.
 - '0': (0 0 0), '1' (1 1 1) → repetition code
 - '0': (0 0 1), '1' (1 1 0) → another LBC
 - '0': (011), '1' (010) → another LBC
 -
 - Different LBC has different error performance, we want choose the one minimizing the error probability.

PROPERTIES: HAMMING DISTANCE

• Design of LBC (Cont'd)

- Rule of thumb: we want the codewords to be as "different" as possible.
 - '0': $(0\ 0\ 0)$, '1' $(1\ 1\ 1)$ \rightarrow repetition code: 3 bits difference
 - '0': (011), '1' (010) → another LBC: 1 bit difference
- Definition: Hamming distance
 - The Hamming distance d_{ij} between two binary codewords $\mathbf{c}_i = [c_{i1}, c_{i2}, \dots, c_{in}]$ $\mathbf{c}_j = [c_{j1}, c_{j2}, \dots, c_{jn}]$ is defined as the number of bits in which they differ.
 - Larger Hamming distance → two codewords are further apart → the probability of choosing the wrong codeword is smaller → better power efficiency
- Minimum Hamming distance:
 - If there are more than two codewords, one Hamming distance for each pair of codewords

$$d_{\min} = \min_{i \neq j} d_{ij}$$

• E.g. the minimum Hamming distance of the (5, 2) code is:

PROPERTIES: ERROR DETECTION CAPABILITY

• Error detection capability

- For LBC code with minimum Hamming distance d_{\min}
 - All error patterns with error bits less than or equal to

 $t = d_{\min} - 1$

can be detected (non-zero syndrome) (why?)

• All error patterns with error bits less than or equal to

$$t = \left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor$$

can be corrected (why?)

• E.g.
$$d_{\min} = 3$$

- All 1-bit error can be corrected
- All 2-bit error can be detected

PROPERTIES: VECTOR SUBSPACE

• Vector subspace

- Vector space V_n : the set of all length-*n* vectors
- Vector subspace: a subset S of vector space V_n is called a subspace if the following two conditions are met:
 - 1. The all-zero vector is in *S*
 - 2. the sum of any two vectors in S is also in S (closure property)
- Example
 - Vector space V_3
 - -000,001,010,011,100,101,110,111
 - Are the following vector subspaces?
 - $-\{000, 001\}$
 - $\{001, 010, 011\}$
 - $\{000, 001, 010, 011\}$
 - $\{000, 100, 010, 001\}$

PROPERTIES: VECTOR SUBSPACE

• (n, k) Linear block code

- The 2^k length-*n* codewords form a vector subspace of V_n
 - 1. the all-zero length-n vector is a valid codeword
 - 2. the sum of any two codewords is still a codeword.
- Geometric representation

 2^k *n*-tuples constitute the subspace of codewords

• We want the codewords to be as far apart as possible (maximize d_{\min}).

Optimum decoder

- If all the codewords are equiprobable, then the optimum receiver is the maximum likelihood receiver
- E.g. AWGN channel with BPSK
 - Message vector: $\mathbf{S}_m = [s_{m1}, c_{m2}, \dots, s_{mk}] \in \{0, 1\}^k$
 - Encoding:
 - BPSK modulation:
 - Received signal:
 - $= [y_1, y_2, \dots, y_n] \in \{-1, 1\}^n$ • BPSK demodulation
 - Decode:

n:

$$\mathbf{c}_{m} = [c_{m1}, c_{m2}, \cdots, c_{mn}] \in \{0, 1\}^{n}$$

$$\mathbf{x}_{m} = [x_{m1}, x_{m2}, \cdots, x_{mn}] \in \{-1, 1\}^{n}$$

$$\mathbf{r} = \mathbf{x}_{m} + \mathbf{z} \longleftarrow \text{AWGN}$$

on:
$$\mathbf{y} = \text{demod}(\mathbf{r}) = [y_1, y_2, \cdots]$$

$$\hat{\mathbf{s}}_m = \operatorname{decode}(\mathbf{y})$$

• Maximum likelihood decoder: choose \mathbf{s}_m that can maximize the likelihood function

$$p(\mathbf{y} | \mathbf{s}_u)$$

• Optimum Decoder (Cont'd)

- Likelihood function

$$p(\mathbf{y} | \mathbf{s}_u) = p(y_1 | s_{u1}) \times p(y_2 | s_{u2}) \times \dots \times p(y_n | s_{un})$$

$$= p(y_1 | s_{u1}) = p(y_1 | s_{u1}) \times p(y_2 | s_{u2}) \times \dots \times p(y_n | s_{un})$$

$$- p(y_1 | s_{u1}) =$$

$$p(\mathbf{y} | \mathbf{s}_u) = p^j (1-p)^{n-j}$$

• Optimum decoder (Cont'd)

– Likelihood function

$$p(\mathbf{y} | \mathbf{s}_u) = p^j (1-p)^{n-j}$$

- *j* is the Hamming distance between **y** and \mathbf{s}_{u}
- Since p < 1-p, maximize $p(\mathbf{y} | \mathbf{s}_u) \rightarrow \text{minimize } j$
 - Choose \mathbf{s}_u that has the smallest Hamming distance with \mathbf{y}

$$\hat{\mathbf{s}}_m = \underset{\mathbf{s}_u}{\operatorname{arg\,min}} \| \mathbf{y} - \mathbf{s}_u \|_H$$

• Visualization of a 6-Tuple space

PROPERTIES: ERROR PERFORMANCE

Message error probability

 The probability that the decoder commits an erroneous decoding (the probabilities that there are more than *t*-bit error)

$$P_M \leq \sum_{j=t+1}^n \binom{n}{j} p^j (1-p)^{n-j}$$

- *t*: the correction capability of the code
- The equality holds if all t bits errors can be corrected, but no t+1 bits errors can be corrected.
- Bit error probability

$$P_B \approx \frac{1}{n} \sum_{j=t+1}^n j \binom{n}{j} p^j (1-p)^{n-j}$$

PROPERTIES: ERROR PERFORMANCE

• Example:

- Consider a (16, 8) linear block code capable of double-error corrections. Assume that BPSK is used with the received E_b / N_0 is 10 dB. (1) what is the message error probability? (2) what is the bit error probability?

PROPERTIES: SOME SPECIFIC LBC

• Some specific LBC

- Hamming code

$$(n,k) = (2^m - 1, 2^m - 1 - m)$$

 $d_{\min} = 3$

- Cyclic code
 - cyclic redundancy check
- Reed-Solomon code
 - Compact Disc (CD)

