Department of Electrical Engineering University of Arkansas
 UNTERSITY Of ARKANSAS

ELEG 5663 Communication Theory Ch. 6 Coding: PART I

Dr. Jingxian Wu
wuj@uark.edu

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

INTRODUCTION

Information
source

From ather
bources

symbols

input
m_{i}

Message symbols

Information sink

INTRODUCTION

- Channel Coding
- Channel coding with structured sequence
- Protect the information from channel distortions by adding structured redundancy
- Examples:
- Cyclic Redundancy Check (CRC), Linear Block Code, Convolutional Code (CC), Turbo Code, Low Density Parity Check (LDPC), etc.
- Coding can only be used in digital communication systems.

ARKANSAS

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

ERROR CONTROL

- Error control
- Error detection and retransmission:
- detect the presence of errors at the Rx by using the structured sequence
- Rx notifies Tx about the error
- Tx retransmit the message
- Requires a two-way link between Tx and Rx
- Forward error correction (FEC)
- The Rx can correct the errors by using the structured sequence
- Only a one-way link is required.

ERROR CONTROL: ARQ

- Automatic Retransmission Query (ARQ)
- When the Rx detects an error, it will require the Tx to retransmit the information.
- Such an error control procedure is called ARQ.
- 3 types of ARQ:
- Stop-and-wait
- Continuous ARQ with pull back
- Continuous ARQ with selective repeat
- Stop-and-wait ARQ
- The Rx waits for an acknowledgement (ACK) of each transmission before transmitting the next packet.

ERROR CONTROL: ARQ

- Continuous ARQ with pullback
- The Tx transmits continuously without waiting for a ACK
- In case of NAK (negative ACK), the Tx will retransmit the error packet and all the subsequent packets
- Continuous ARQ with selective repeat
- In case of NAK, the Tx will only retransmit the error packet
- More complicated operation at the Rx (re-order packets, memory)

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

STRUCTURED SEQUENCE

- Channel coding
- Protect the transmitted information by adding redundancy.
- E.g. repetition code:
- ‘0': ‘000’
- '1': '111'
- Error detection
- Include only enough redundant information such that the Rx can detect an error by looking at the Rx data.
- E.g. repeat ' 1 ' 2 times. $T x(11), R x(01) \rightarrow$ Receiver knows there is an error, but couldn't guess what is transmitted
- Send back Negative Acknowledgement (automatic-repeat query: ARQ)
- Error correction
- Include enough redundant information such that the Rx can recover the original information by looking at the Rx data.
- E.g. repeat ' 1 ' 3 times. $\mathrm{Tx}\left(\begin{array}{lll}1 & 1 & 1\end{array}\right), \mathrm{Rx}\left(\begin{array}{lll}0 & 1 & 1\end{array}\right) \rightarrow$ Receiver will guess that (1 11) is transmitted \rightarrow detect ' 1 '
- Majority decision rule \rightarrow minimize the probability of error.

STRUCTURED SEQUENCE

- Linear block code (LBC)
- Every k bits of information corresponds to a codeword of length n bits
- E.g. repetitionon code 1-bit of information, 3-bit codeword
- $n>k$: there are $(n-k)$ bits of redundancy
- The code is called: (n, k) linear block code
- Definition:
- code rate: $r=k / n$
- Measures the efficiency of the code (1-r: the percentage of redundancy)
- E.g.: $(3,1)$ repetition code: $r=1 / 3 .(2,1)$ repetition code: $r=1 / 2$.

anvastros
ARKANSAS

STRUCTURED SEQUENCE: SINGLE PARITY CHECK

- Single parity check
- Adding a single parity bit to a block of data bits
- Code rate: $r=k /(k+1)$
- Odd parity: add a parity bit such that the summation of all the bits yields an odd result (odd number of ones)

$$
\underline{1} 01010 \quad \underline{0} 00111
$$

- Even parity: add a parity bit such that the summation of all the bits yields an even result (even number of ones)

$$
\underline{0} 01010 \quad \underline{1} 00111
$$

- Error detection only
- Will the code be able to detect even number of errors?

STRUCTURED SEQUENCE: RECTANGULAR CODE

- Rectangular code (product code)
- Form a rectangle of message bits of M rows and N columns.
- A horizontal parity check is appended to each row
- A vertical parity check is appended to each column
- Code rate:

$$
r=\frac{M N}{(M+1)(N+1)}
$$

- Any single bit error will cause:

$\underline{0}$	0	1	1	0	0
$\underline{1}$	1	0	1	1	0
$\underline{0}$	0	1	0	1	0
$\underline{1}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$
$M=3, N=5$					

- A parity check error in a row

$$
M=3, N=5
$$

- A parity check error in a column
- The single bit error can be detected and corrected!
- Product code can detect any 1 bit error

STRUCTURED SEQUENCE: WHY ERROR CORRECTION?

- Trade-off 1: Error performance v.s. bandwidth
- fixing SNR and data rate
- Error correction code \rightarrow smaller BER

$$
\frac{P_{r}}{N}=\frac{E_{b}}{N_{0}} \frac{R}{W}
$$

- Error correction code \rightarrow More bandwidth is needed to transmit (information bits + redundancy bits)

STRUCTURED SEQUENCE: WHY ERROR CORRECTION?

- Trade-off 2: power v.s. bandwidth
- Fixing BER and data rate
- Error correction code \rightarrow smaller $E_{b} / N_{0} \rightarrow$ smaller P_{r}

$$
\frac{E_{b}}{N_{0}}=\frac{P_{r}}{N_{0}} \frac{1}{R}
$$

- Error correction code \rightarrow More bandwidth is needed to transmit (information bits + redundancy bits)
- Coding gain: at a given BER, coding gain is the difference in $\mathrm{Eb} / \mathrm{N} 0$ between coded and uncoded system

$$
G(d B)=\left(\frac{E_{b}}{N_{0}}\right)_{u} d B-\left(\frac{E_{b}}{N_{0}}\right)_{c} d B
$$

STRUCTURED SEQUENCE: WHY ERROR CORRECTION?

- Trade-off 3: data rate v.s. bandwidth
- Fix BER and Tx power
- Error correction code \rightarrow smaller $E_{b} / N_{0} \rightarrow$ bigger R

$$
\frac{E_{b}}{N_{0}}=\frac{P_{r}}{N_{0}} \frac{1}{R}
$$

- Error correction code \rightarrow More bandwidth is needed to transmit (information bits + redundancy bits)

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

LBC: PREPARATIONS

- Binary operations
$-0+0=0,0+1=1,1+0=1,1+1=0$
$-0 \times 0=0,0 \times 1=0,1 \times 0=0,1 \times 1=1$
- Matrix operations
- The product of an $m \times k$ matrix and $k \times n$ matrix
- Has a size of $m x n$

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{l}
b_{11} b_{12} \\
b_{21} b_{22} \\
b_{31} b_{32}
\end{array}\right] \quad \mathbf{C}=\mathbf{A} \times \mathbf{B}=\left[\begin{array}{l}
c_{11} c_{12} \\
c_{21} c_{22} \\
c_{31} c_{32}
\end{array}\right] \\
c_{m n}=a_{m 1} b_{1 n}+a_{m 2} b_{2 n}+a_{m 3} b_{3 n} \\
c_{21}=a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}
\end{gathered}
$$

LBC: AN EXAMPLE

- $(7,4)$ code
- 4-bit information, 7-bit codeword (3-bit redundancy)
- Information vectors

- $2^{\wedge} 4=16$ possible information vectors $\rightarrow 16$ codewords
- Choose 16 codewords out of $2^{\wedge} 7=128$ possible 7 -bit combinations.
- Codeword vector \mathbf{c} is a linear function of information vector \mathbf{x}

$$
\mathbf{c}_{(1 \times 7)}=\mathbf{x}_{(1 \times 4)} \cdot \mathbf{G}_{(4 \times 7)}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right] \times\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- The codeword for [0lll 0000$]$:
- The codeword for $\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]$:
- The codeword for $\left[\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$:

LBC: GENERATION MATRIX

- (n, k) linear block code
- k-bit of information, n-bit of codeword
- Information vector (1 x k row vector)

$$
\begin{aligned}
& \mathbf{x}=\left[x_{1}, x_{2}, \cdots, x_{k}\right] \\
& \mathbf{c}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]
\end{aligned}
$$

- Codeword vector (1 x n row vector)
- Linear relationship between information vector and codeword vector
- Generation matrix (size $\boldsymbol{k} \boldsymbol{x} \boldsymbol{n}$ matrix)

$$
\begin{gathered}
\mathbf{c}=\mathbf{x} \cdot \mathbf{G} \\
\mathbf{G}=\left[\mathbf{I}_{k \times k} \mid \mathbf{P}_{k \times(n-k)}\right]=\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
p_{11} & p_{12} & \cdots & p_{1(n-k)} \\
p_{21} & p_{22} & \cdots & p_{2(n-k)} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n(n-k)}
\end{array}\right]
\end{gathered}
$$

The first k bits of codeword are the same as information bits: systematic code

LBC: GENERATION MATRIX

- Generation matrix (cont'd)

$$
\mathbf{c}=\mathbf{x} \times \mathbf{G}=\left[x_{1}, x_{2}, \cdots, x_{k}\right] \cdot\left[\begin{array}{c}
\mathbf{g}_{1} \\
\mathbf{g}_{2} \\
\vdots \\
\mathbf{g}_{k}
\end{array}\right]=x_{1} \cdot \mathbf{g}_{1}+x_{2} \cdot \mathbf{g}_{2}+\cdots+x_{k} \cdot \mathbf{g}_{k}
$$

- Example

$$
\mathbf{c}_{(1 \times 7)}=\mathbf{x}_{(1 \times 4)} \cdot \mathbf{G}_{(4 \times 7)}=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right] \times\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- The codeword for [$\left.\begin{array}{llll}1 & 0 & 0\end{array}\right]$
- The codeword for [$\left.\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right]$

LBC: PARITY CHECK MATRIX

- Parity check matrix (an $n \times(n-k)$ matrix)

$$
\mathbf{H}_{n \times(n-k)}=\left[\begin{array}{c}
\mathbf{P}_{k \times(n-k)} \\
\mathbf{I}_{(n-k) \times(n-k)}
\end{array}\right]
$$

- The product between \mathbf{G} and \mathbf{H} is an all zero matrix

$$
\mathbf{G}_{k \times n} \times \mathbf{H}_{n \times(n-k)}=\left[\mathbf{I}_{k \times k} \mid \mathbf{P}_{k \times(n-k)}\right] \times\left[\begin{array}{c}
\mathbf{P}_{k \times(n-k)} \\
\mathbf{I}_{(n-k) \times(n-k)}
\end{array}\right]=\mathbf{P}_{k \times(n-k)}+\mathbf{P}_{k \times(n-k)}=\mathbf{0}_{k \times(n-k)}
$$

- For any valid codeword $\mathbf{c}=\mathbf{x} \times \mathbf{G}$
- Thus $\mathbf{c} \cdot \mathbf{H}=\mathbf{x} \cdot \mathbf{G} \cdot \mathbf{H}=\mathbf{x} \cdot(\mathbf{G} \cdot \mathbf{H})=\mathbf{c} \cdot \mathbf{0}=\mathbf{0}$
- Any valid codeword multiplied by \mathbf{H} is 0 !
- The receiver can use this to detect if there is an error during transmission.

LBC: PARITY CHECK MATRIX

- Parity check matrix

$$
\begin{aligned}
& \mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{H}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& -\mathrm{y}=\mathrm{c}+0=\left[\begin{array}{lllllll}
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
& \mathrm{y} H= \\
& -
\end{aligned}
$$

LBC: SYNDROME DECODING

- Received vector

- Syndrome

$$
\begin{gathered}
\mathbf{s}_{1 \times(n-k)}=\mathbf{y}_{1 \times n} \mathbf{H}_{n \times(n-k)}=(\mathbf{c}+\mathbf{e}) \cdot \mathbf{H}=\mathbf{c} \cdot \mathbf{H}+\mathbf{e} \cdot \mathbf{H}=\mathbf{e} \cdot \mathbf{H} \\
\mathbf{s}=\mathbf{e} \cdot \mathbf{H}
\end{gathered}
$$

- Syndrome: for each error pattern, there is a syndrome \mathbf{s}
- We can guess the error pattern \mathbf{e} by looking at the syndrome!
- Error vector: n-bit $\rightarrow 2^{n}$ error vectors
- Syndrome: (n-k)-bit $\rightarrow 2^{n-k} \quad$ syndromes
- There are more error vectors than syndromes!
- Some error vectors might have the same syndrome
- Given syndrome, there might be more error vectors \rightarrow just randomly choose one.

LBC: SYNDROME DECODING EXAMPLE

- Example $(5,2)$ systematic code

$$
\mathbf{G}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \mathbf{H}=
$$

- codewords

Information: \mathbf{x}	Codeword: \mathbf{c}
00	00000
01	01011
10	10101
11	11110

- \# of error vectors:
- \# of syndromes

LBC: SYNDROME DECODING EXAMPLE

- Example (5, 2) systematic code
- Syndromes

$$
\left.\begin{array}{l}
\text { 1. } \mathrm{e}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \rightarrow \mathrm{s}= \\
\text { 2. } \mathrm{e}=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right] \rightarrow \mathrm{s}=\mathrm{a}
$$

LBC: SYNDROME DECODING EXAMPLE

- Example (5, 2) systematic code
- Syndrome table

syndromes	error vector
00	0

- It can correct all 1-bit error
- It can detect 2-bit error
- More than 2-bit error is beyond the capability of this (5,2)-code

LBC: STANDARD ARRAY

- Standard array:
- Columns: all 2^{k} codewords
- Rows: all 2^{n-k} correctable error patterns
- Example: $(5,2)$ systematic code with

$$
\mathbf{G}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

- Each row is called a coset
- The first element in a row is called a coset leader
- All elements in the same coset have the same syndrome

LBC: SYNDROME DECODING

- Example (5, 2) systematic code

$$
\begin{aligned}
& -\quad \text { Tx } \\
& \mathrm{x}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \rightarrow \mathrm{c}= \\
& y=c+e=c+\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right]= \\
& \text { - Rx } \\
& \mathrm{s}=\mathrm{yH}= \\
& \mathrm{e}= \\
& c=y+e \\
& \mathrm{x}= \\
& -\mathrm{Tx} \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \rightarrow \mathrm{c}= \\
& y=c+e=c+\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0
\end{array}\right]= \\
& \text { - Rx } \\
& \mathrm{s}=\mathrm{yH}= \\
& \mathrm{e}= \\
& c=y+e \\
& \mathrm{x}=
\end{aligned}
$$

LBC: SYNDROME DECODING

- Example (5, 2) systematic code

$$
\begin{aligned}
& -\quad \text { Tx } \\
& \mathrm{x}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \rightarrow \mathrm{c}= \\
& y=c+e=c+\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0
\end{array}\right]= \\
& \text { - Rx } \\
& \mathrm{s}=\mathrm{yH}= \\
& \mathrm{e}= \\
& c=y+e \\
& \mathrm{x}= \\
& -\mathrm{Tx} \\
& \mathrm{x}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \rightarrow \mathrm{c}= \\
& y=c+e=c+\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]= \\
& \text { - Rx } \\
& \mathrm{s}=\mathrm{yH}= \\
& \mathrm{e}= \\
& c=y+e \\
& \mathrm{x}=
\end{aligned}
$$

OUTLINE

- Introduction
- Types of Error Control
- Structured Sequence
- Linear Block Code
- Error Detection and Correction Capability

PROPERTIES

- Design of LBC
- k bits of information: 2^{k} possible combinations
- n bits of codeword: 2^{n} possible combinations
- one-to-one relationship between (k-bit information, n -bit codeword)
- Out of the 2^{n} possible combinations, we only need 2^{k} codewords
- How to choose the 2^{k} codeword?
- E.g. $(3,1)$ LBC: choose 2 codewords out of 8 possible combinations.
- ' 0 ': (0000), ' 1 ' ($\left.\begin{array}{lll}1 & 1 & 1\end{array}\right) \rightarrow$ repetition code

- '0': ($\left.\begin{array}{lll}0 & 1 & 1\end{array}\right), ~ ' 1 '\left(\begin{array}{lll}0 & 1 & 0\end{array}\right) \rightarrow$ another LBC
-
- Different LBC has different error performance, we want choose the one minimizing the error probability.

PROPERTIES: HAMMING DISTANCE

- Design of LBC (Cont'd)
- Rule of thumb: we want the codewords to be as "different" as possible.
- ' 0 ': (00000), ' 1 ' ($\left.\begin{array}{lll}1 & 1 & 1\end{array}\right) \rightarrow$ repetition code: 3 bits difference

- Definition: Hamming distance
- The Hamming distance $d_{i j}$ between two binary codewords $\mathbf{c}_{i}=\left[c_{i 1}, c_{i 2}, \cdots, c_{i n}\right] \quad \mathbf{c}_{j}=\left[c_{j 1}, c_{j 2}, \cdots, c_{j n}\right\rfloor$
is defined as the number of bits in which they differ.
- Larger Hamming distance \rightarrow two codewords are further apart \rightarrow the probability of choosing the wrong codeword is smaller \rightarrow better power efficiency
- Minimum Hamming distance:
- If there are more than two codewords, one Hamming distance for each pair of codewords

$$
d_{\min }=\min _{i \neq j} d_{i j}
$$

- E.g. the minimum Hamming distance of the $(5,2)$ code is:

PROPERTIES: ERROR DETECTION CAPABILITY

- Error detection capability
- For LBC code with minimum Hamming distance $d_{\text {min }}$
- All error patterns with error bits less than or equal to

$$
t=d_{\min }-1
$$

can be detected (non-zero syndrome) (why?)

- All error patterns with error bits less than or equal to

$$
t=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor
$$

can be corrected (why?)

- E.g. $d_{\text {min }}=3$
- All 1-bit error can be corrected
- All 2-bit error can be detected

PROPERTIES: VECTOR SUBSPACE

- Vector subspace
- Vector space V_{n} : the set of all length- n vectors
- Vector subspace: a subset S of vector space V_{n} is called a subspace if the following two conditions are met:
- 1. The all-zero vector is in S
- 2. the sum of any two vectors in S is also in S (closure property)
- Example
- Vector space V_{3}
$-000,001,010,011,100,101,110,111$
- Are the following vector subspaces?
$-\{000,001\}$
$-\{001,010,011\}$
$-\{000,001,010,011\}$
$-\{000,100,010,001\}$

PROPERTIES: VECTOR SUBSPACE

- (n, k) Linear block code
- The 2^{k} length n codewords form a vector subspace of V_{n}
- 1. the all-zero length-n vector is a valid codeword
- 2. the sum of any two codewords is still a codeword.
- Geometric representation

- We want the codewords to be as far apart as possible (maximize $d_{\text {min }}$).

PROPERTIES: OPTIMUM DECODER

- Optimum decoder
- If all the codewords are equiprobable, then the optimum receiver is the maximum likelihood receiver
- E.g. AWGN channel with BPSK
- Message vector: $\quad \mathbf{s}_{m}=\left[s_{m 1}, c_{m 2}, \cdots, s_{m k}\right] \in\{0,1\}^{k}$
- Encoding: $\quad \mathbf{c}_{m}=\left[c_{m 1}, c_{m 2}, \cdots, c_{m n}\right] \in\{0,1\}^{n}$
- BPSK modulation: $\quad \mathbf{x}_{m}=\left[x_{m 1}, x_{m 2}, \cdots, x_{m n}\right] \in\{-1,1\}^{n}$
- Received signal:

$$
\mathbf{r}=\mathbf{x}_{m}+\mathbf{z} \longleftarrow \text { AWGN }
$$

- BPSK demodulation: $\mathbf{y}=\operatorname{demod}(\mathbf{r})=\left[y_{1}, y_{2}, \cdots, y_{n}\right] \in\{-1,1\}^{n}$
- Decode: $\quad \hat{\mathbf{S}}_{m}=\operatorname{decode}(\mathbf{y})$
- Maximum likelihood decoder: choose \mathbf{S}_{m} that can maximize the likelihood function

$$
p\left(\mathbf{y} \mid \mathbf{s}_{u}\right)
$$

PROPERTIES: OPTIMUM DECODER

- Optimum Decoder (Cont'd)
- Likelihood function

$$
\begin{aligned}
p\left(\mathbf{y} \mid \mathbf{s}_{u}\right) & =p\left(y_{1} \mid s_{u 1}\right) \times p\left(y_{2} \mid s_{u 2}\right) \times \cdots \times p\left(y_{n} \mid s_{u n}\right) \\
-\quad p\left(y_{1} \mid s_{u 1}\right) & =
\end{aligned}
$$

$$
p\left(\mathbf{y} \mid \mathbf{s}_{u}\right)=p^{j}(1-p)^{n-j}
$$

PROPERTIES: OPTIMUM DECODER

- Optimum decoder (Cont'd)
- Likelihood function

$$
p\left(\mathbf{y} \mid \mathbf{s}_{u}\right)=p^{j}(1-p)^{n-j}
$$

- j is the Hamming distance between \mathbf{y} and \mathbf{S}_{u}
- Since $p<l-p$, maximize $p\left(\mathbf{y} \mid \mathbf{S}_{u}\right) \rightarrow \operatorname{minimize} j$
- Choose \mathbf{s}_{u} that has the smallest Hamming distance with \mathbf{y}

$$
\hat{\mathbf{s}}_{m}=\arg \min \left\|\mathbf{y}-\mathbf{s}_{u}\right\|_{H}
$$

PROPERTIES: OPTIMUM DECODER

- Visualization of a 6-Tuple space

UNIVERSITYOF

PROPERTIES: ERROR PERFORMANCE

- Message error probability
- The probability that the decoder commits an erroneous decoding (the probabilities that there are more than t-bit error)

$$
P_{M} \leq \sum_{j=t+1}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}
$$

- t : the correction capability of the code
- The equality holds if all t bits errors can be corrected, but no $t+1$ bits errors can be corrected.
- Bit error probability

$$
P_{B} \approx \frac{1}{n} \sum_{j=t+1}^{n} j\binom{n}{j} p^{j}(1-p)^{n-j}
$$

PROPERTIES: ERROR PERFORMANCE

- Example:
- Consider a $(16,8)$ linear block code capable of double-error corrections. Assume that BPSK is used with the received E_{b} / N_{0} is 10 dB . (1) what is the message error probability? (2) what is the bit error probability?

PROPERTIES: SOME SPECIFIC LBC

- Some specific LBC
- Hamming code

$$
\begin{gathered}
(n, k)=\left(2^{m}-1,2^{m}-1-m\right) \\
d_{\min }=3
\end{gathered}
$$

- Cyclic code
- cyclic redundancy check
- Reed-Solomon code
- Compact Disc (CD)

