Department of Electrical Engineering University of Arkansas

Dr. Jingxian Wu

Jingxian.wu@sonoma.edu

OUTLINE

- Introduction
- Channel
- Received Signal Power and Noise Power
- Link Budget Analysis
- Noise Figure

INTRODUCTION

Communication Link

- The entire communication path
 - Starting from information source
 - Ending at information sink.
 - Includes all the encoding, modulation, channel, demodulation, decoding steps involved during the transmission of the information.

• Link analysis

- The calculations and tabulation of useful signal power and interfering noise power at the receiver.
 - Calculate the SNR at receiver by consider all the effects through the communication link:
 - Distance
 - Frequency
 - Temperature
 - Bandwidth
 - Interference

.

ARKANSAS

INTRODUCTION

• Link budget

- The results of link analysis
- An estimation of the error performance of communication system.
- Example: find out the value of E_b/N_0 at receiver through link analysis, then find out the error probability through the BER v.s. E_b/N_0 curve.
- Why link analysis?
 - Find out the necessary parameters to meet certain system requirement.
 - Find out whether the designed system will meet the requirements
 - E.g. whether the error probability is below a certain value.
 - Find out the performance constraining factors in the system
 - Find out the trade-off that can be made in the system
 - Adjust certain parameters to meet requirements.
 - Estimate the power, cost for implementing a system.

OUTLINE

- Introduction
- Channel
- Received Signal Power and Noise Power
- Link Budget Analysis
- Noise Figure

CHANNEL

• Channel

- The propagation medium of the electromagnetic signals that bear the information.
 - Wired channel
 - Twisted pair
 - Coaxial cable
 - Fiber optic cable
 - Wireless channel
 - Vacuum
 - Air
 - Water
- Different channels have different impacts on the transmitted signals.

CHANNEL: FREE SPACE

• Free space

- An ideal RF propagation path
- The RF energy arriving at the receiver is assumed to be a function only of distance between Tx and Rx.
- Free of all hindrances to RF propagation, such as
 - Absorption,
 - Reflection
 - Refraction
 - Diffraction
 - These factors will be discussed in the Wireless Communications course
- Only free space propagation will be considered in this chapter.

CHANNEL

- Error performance degradation
 - $\frac{E_b}{N_0} = \frac{S}{N} \frac{W}{R}$
 - Error probability depends on E_b / N_0 and modulation scheme
 - E_b / N_0 depends on
 - S: average signal power
 - N: average noise power
 - W: bandwidth
 - R: bit rate
 - Signal power and noise power are affected by the channel.
 - SNR degradation can be contributed by two factors
 - Signal loss (the power of the signal becomes weaker)
 - Noise

CHANNEL: SNR DEGRADATION

Sources of SNR degradation

- 1. Bandlimiting loss (signal loss)
 - All communication systems use filters to constrain the bandwidth of the signal to avoid interference to other users.
 - This will results in signal loss.
- 2. ISI (interference source)
 - One symbol might smear into another symbol in time domain and cause ISI.
 - Imperfect filtering, system bandwdith constraints, lost of synchronization will cause ISI.
- 3. Local oscillator (LO) phase noise (signal loss and noise source)
 - In coherent detection, if the phase of the reference signal is different from the phase of the received signal, it will result in signal energy loss.
 - Phase fluctuations or jitter will also add noise to the signal.

CHANNEL: SNR DEGRADATION

Sources of SNR degradation

- 4. Antenna efficiency (signal loss)
 - The receiver antenna can only capture partial of the signal power.
- 5. Space loss (signal loss)
 - The longer the transmission distance, the weaker the received signal.
- 6. Co-channel interference (noise source)
 - Caused by other users/communication systems that are using the same channel
- 7. Adjacent channel interference (noise source)
 - Unwanted signals spilled over from neighboring channels.
- 8. Thermal noise (noise source)
 - Always present in communication system

—

CHANNEL: SNR DEGRADATION

OUTLINE

- Introduction
- Channel
- Received Signal Power and Noise Power
- Link Budget Analysis
- Noise Figure

SNR: SIGANL POWER

• Free space propagation equation

$$P_r = \frac{P_t G_t G_r \lambda^2}{\left(4\pi d\right)^2}$$

- $-P_t$: power at transmitter
- $-G_t$:transmitter antenna gain
- $-G_r$: receiver antenna gain
- $\lambda = c/f$: wavelength. (the distance of propagation within one period).
- d: distance between Tx and Rx.
- Antenna gains

$$G = \frac{4\pi A_e}{\lambda^2}$$

 $-A_e$: antenna effective area $A_e = \eta A_p$

- η : antenna efficiency. A_p : actual antenna area.
- $-\lambda = c/f$: wavelength. (the distance of propagation within one period)

SNR: SIGANL POWER

• EIRP (effective isotropic radiated power)

 $EIRP = P_t G_t$

- Pathloss
 - The ratio between transmit power and receiver power

$$L = \frac{P_t}{P_r} \qquad \qquad L(dB) = 10\log_{10}\frac{P_t}{P_r}$$

- L is always bigger than 1.
- L(dB) is always bigger than 0.

$$L(dB) = 10 \log_{10} P_t - 10 \log_{10} P_r$$

- 1 (dBW) = 10 log₁₀ $\frac{P_t}{1W}$
- 1 (dBm) = 10 log₁₀ $\frac{P_t}{1mW}$

SNR: SIGANL POWER

• Free space loss

- The pathloss due to free space propagation only
 - DO NOT consider the effects of antenna gain

$$L_s = \left(\frac{4\pi d}{\lambda}\right)^2$$

- With free space loss, the received signal power can be expressed as

$$P_r = \frac{P_t G_t G_r}{L_s}$$

SNR: SIGNAL POWER

• Example

- A transmitter has an output of 2 W at a carrier frequency of 2 GHz. Assume that the transmitting and receiving antennas are parabolic dishes each 1 meter in diameter. Assume the efficiency of the Tx antenna is 0.6, and the efficiency of the Rx antenna is 0.4.
 - 1. Evaluate the gains of the two antennas.
 - 2. Calculate the EIRP of the transmitted signal in unit of dBW.
 - 3. If the Rx antenna is 30 km from the Tx antenna over a free-space path, find the free space loss
 - 4. Find the received signal power in unit of dBW.

SNR: THERMAL NOISE POWER

• Thermal noise

- Caused by the thermal motion of electrons in all conductors
 - Higher temperature → faster electron movement → larger noise power
- Modeled as: AWGN
 - The PSD is flat up to 10^{12} Hz.
- The single sided PSD is

 $N_0 = \kappa T^o$

- $\kappa = 1.38 \times 10^{-23} J / K$: Boltzmann's constant
- T^{o} : absolute temperature in the unit of Kelvin. (0 K = -273.15 centigrade).
- Power of thermal noise for a communication system with bandwidth W

$$P = N_0 W = \kappa T^o W$$

LINK BUDGET ANALYSIS

• Example:

- A satellite system with EIRP 40 dBW, frequency of 10GHz, and data rate 10 Mbps. The distance between Tx and Rx is 38,000km. Assume the required E_b / N_0 is 10 dB, the temperature is 600 K, and the rooftop dish has an efficiency of 0.55. What is the minimum diameter of the dish?

OUTLINE

- Introduction
- Channel
- Received Signal Power and Noise Power
- Link Budget Analysis
- Noise Figure

LINK BUDGET ANALYSIS: C/N

• Link budget analysis

- The main quantity of interest in link budget analysis is the SNR or E_b / N_0 at receiver.
- In communication link, the receiver SNR is often called carrier-to-noise ratio (C/N).
- Carrier-to-noise ratio
 - If all the carrier energy is devoted to signal, then the C/N is defined as the ratio between received signal power, P_r , and noise power, $N = \kappa T^o W$

$$\frac{C}{N} = \frac{P_r}{N} = \frac{S}{N} = \frac{P_t G_t G_r}{L_o L_s N} = \frac{EIRPG_r}{L_s L_o \kappa T_0 W}$$

- L_0 : all other losses and degradations not accounted for by other terms.

 E_{h}/N_{0}

Relationship between C/N and

$$\frac{E_b}{N_0} = \frac{P_r}{N} \frac{W}{R} \qquad \qquad \frac{P_r}{N_0} = \frac{E_b}{N_0} R$$

LINK BUDGET ANALYSIS: LINK MARGIN

• **Two** E_b / N_0 values of interest

- 1. Received E_b / N_0 : the actual E_b / N_0 at receiver. Denoted as $(E_b / N_0)_r$
- 2. Required E_b / N_0 : the required E_b / N_0 to achieve a certain error probability. Denoted as $(E_b / N_0)_{read}$

• Link margin

- To ensure the proper operation of the system, design a system with

 $(E_b / N_0)_r > (E_b / N_0)_{reqd}$, thus have a safety margin.

- Link margin is defined as the difference between $(E_b / N_0)_r$ and $(E_b / N_0)_{reqd}$

$$M(dB) = \left(E_b / N_0\right)_r (dB) - \left(E_b / N_0\right)_{reqd} (dB)$$

LINK BUDGET ANALYSIS

• Link budget are typically in Decibles

$$\left(\frac{E_b}{N_0}\right)_r (dB) =$$

• Self-study: Section 5.4.3 and 5.4.4

LINK BUDGET ANALYSIS

• Example

- A communication system with the following parameters: frequency is 3GHz, BPSK, BER is 10^{-3} , data rate= 1kbps, link margin = 3dB, EIRP = 10 W, receiver antenna gain = 10 dB, distance between Tx and Rx is 4,000 km. Find the maximum allowed noise power spectral density.

OUTLINE

- Introduction
- Channel
- Received Signal Power and Noise Power
- Link Budget Analysis
- Noise Figure

NOISE FIGURE

Operation noise figure

- At the communication receiver, the received signal needs to be amplified.
- The amplifier will
 - 1. Amplify the signal component and noise component.
 - 2. Add its own noise.
- Therefore, the SNR at the output of the amplifier is lower than the SNR at the input of the amplifier.

NOISE FIGURE

• Operation noise figure: definition

- the SNR degradation caused by an amplifier.

$$F_{op} = \frac{(SNR)_{in}}{(SNR)_{out}} = \frac{S_i / N_i}{GS_i / [G(N_i + N_{ai})]}$$

- S_i : signal power at input of amplifier
- N_i : noise power at input of amplifier
- N_{ai} : noise power added by amplifier
- *G* : amplifier gain
- Simplify the operation noise figure equation

$$F_{op} = \frac{N_i + N_{ai}}{N_i} = 1 + \frac{N_{ai}}{N_i}$$

- Operation noise figure depends on the input noise power.
- The input noise power depends on temperature.
- Operation noise figure depends on temperature!
- Noise figure:
 - The value of F_{op} when the input noise has the temperature of 290 K.

NOISE FIGURE

• Example

An amplifier has a noise figure of 4 dB, a bandwidth of 500 kHz, and an input resistance of 50 Ohm. If the input SNR = 1, find the output SNR when the amplifier is connected to a signal source of 50 Ohm at 200 K.

EFFECTIVE NOISE TEMPERATURE

• Effective noise temperature T_R

– The temperature that corresponds to the additional noise power, N_{ai} , introduced by the receiver

$$F = 1 + \frac{N_{ai}}{N_i} \implies N_{ai} =$$

 $T_R = (F-1)290K$

- Characterizes the noisiness of an amplifier
- It has a one-to-one relationship with noise figure → equivalent to noise figure
- an amplifier can be either characterized by noise figure, F, or effective noise temperature,
- The total noise power at the output of an amplifier

$$N_{out} = G\kappa T_g W + G\kappa (F-1)290W$$

EFFECTIVE NOISE TEMPERATURE

• Example

- If an amplifier has a noise figure of 4dB, find the effective noise temperature of the amplifier.

SYSTEM EFFECTIVE TEMPERATURE

• Noise Power in a Communication System

- 1. Antenna will insert noise to the received signal
 - Antenna noise temperature: T_A
 - Noise power inserted by antenna: $N_A = kT_A W$
- 2. Amplifier will insert noise to the received signal
 - Amplifier noise temperature: $T_R = (F-1)290K$
 - Noise power inserted by amplifier at the input : $N_R = kT_R W$
- Total noise power before the amplifier: (from antenna alone)

$$N_{in} = N_A = kT_A W$$

- Total noise power after the amplifier: (from both antenna and amplifier)

$$N_{out} = G(N_A + N_R) = Gk(T_A + T_R)W$$

SYSTEM EFFECTIVE TEMPERATURE

• System Effective Temperature

 The system effective temperature is the combination of the antenna noise temperature and the amplifier noise temperature

$$T_s = T_A + T_R$$

- Total noise power at the output of the amplifier

$$N_{out} = GkT_sW = Gk(T_A + T_R)W$$

- SNR at the input of the amplifier

$$(SNR)_{in} = \frac{S_i}{kT_AW}$$

- SNR at the output of the amplifier

$$(SNR)_{out} = \frac{GS_i}{GkT_sW} = \frac{S_i}{kT_sW}$$

SYSTEM EFFECTIVE TEMPERATURE

• Example

- A receiver front end (amplifier) has a noise figure of 10dB, a gain of 80 dB, and a bandwidth of 6MHz. The input signal power is $10^{-11}W$. The antenna temperature is 150K.
 - Find T_R , T_s , N_{out} , SNR_{in} , SNR_{out} .

LINK BUDGET ANALYSIS

• Example

- A satellite communication system uses a Tx that produces 20W of RF power at a carrier frequency of 10GHz that is fed into a 1-meter parabolic antenna. The distance to the receiving earth station is 20,000 nautical miles. The receiving system uses a 2-meter parabolic antenna and has a 100-K system noise temperature. Each antenna has an efficiency of 0.6. Also assume that the incidental losses amount to 2 dB.
 - Calculate the maximum data rate that can be used if the modulation is non coherent DPSK and the bit error probability is not to exceed 10^{-4}

LINK BUDGET ANALYSIS

• Example

Given the following link parameters, find the maximum allowable receiver (amplifier) noise figure. The modulation is coherent BPSK with BER of 10⁻³ for a data rate of 10Mbps. The carrier frequency is 12GHz. The EIRP is 0 dBW. The receiving antenna diameter is 0.2 m with efficiency 0.55. The antenna temperature is 750K. The distance between Tx and Rx is 10km. The margin is 3dB and the incidental losses are assumed to be 0dB.

