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INTRODUCTION

• Bandpass modulation

– Recall: baseband modulation

• Mapping digital symbols onto baseband waveforms (pulse shapes) 

that are compatible with channel. 

– Bandpass modulation

• The baseband pulse shapes are translated to a higher frequency by 

using a carrier wave (a high frequency sinusoid) 

• Why bandpass modulate?

– To transmit a signal, antennas are usually ¼ of wavelength

• : higher frequency  smaller wavelength  smaller 

antenna.

– E.g. 3KHz baseband signal,

– 1GHz bandpass signal,

– Translate the signal to a pre-allocated channel

• E.g. frequency division multiple access (FDMA) 
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INTRODUCTION

• Bandpass modulation and demodulation
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BANDPASS MODULATION

• Bandpass modulation

– The amplitude, frequency, or phase of a radio frequency (RF) carrier, or a  

combination of them, is varied in accordance with the information to be 

transmitted.
)](2cos[)()( ttftAts c  

– Through bandpass modulation, a baseband signal is shifted to a higher 

frequency.

• Example, amplitude shift keying.

• Time domain:

• Frequency domain:

tftxtx cc 2cos)()( 

 )()(
2

1
)( ccc ffXffXfX 



7

BANDPASS MODULATION

• Types of bandpass modulation

– Coherent (the receivers exploits knowledge of the carrier’s phase for 

detection)

• Phase shift keying (PSK)

• Frequency shift keying (FSK)

• Amplitude shift keying (ASK)

• Continuous phase modulation (CPM)

• Hybrid: Quadrature amplitude modulation (QAM)

– Noncoherent (the receivers operate without knowledge of the absolute 

value of the signal’s phase)

• Differential phase shift keying (DPSK)

• Frequency shift keying (FSK)

• Amplitude shift keying (ASK)

• Continuous phase modulation (CPM)

• Hybrid: Quadrature amplitude modulation (QAM)
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BANDPASS MODULATION: VECTOR REPRESENTATION

• Most bandpass modulated signals can be represented as
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– Orthogonal representation of signal
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• and            are orthonormal

– Proof:
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– The bandpass modulated signal can be represented as

• : there is a one-to-one relationship between            and 

the two dimensional vector  
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BANDPASS MODULATION: VECTOR REPRESENTATION

• Vector representation of bandpass modulated signal

– Inphase component: 

– Quadrature component:

– The inphase carrier,                             , and quadrature carrier,

are orthonomral. 

– The bandpass modulated signal can be equivalently represented as vector 
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• Complex number representation of bandpass modulated signal

– There is a one-to-one relationship between a 2D vector and complex 

number
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– The bandpass modulated signal can be equivalently represented as a 

complex number
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– The complex number representation is only used

for mathematical convenience.
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BANDPASS MODULATION: PSK

• Phase shift keying (PSK)
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– Each digital symbol is mapped to a different phase

– Why            ? 
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– An example of BPSK
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BANDPASS MODULATION: FSK

• Frequency shift keying (FSK)
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– Each digital symbol is mapped to a different frequency. 

– The set of signals,                 , could be orthogonal or non-orthogonal. 

– An example of orthogonal FSK.
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BANDPASS MODULATION: ASK

• Amplitude shift keying (ASK)
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– Each digital symbol is mapped to a different amplitude

– An example of BASK (on-off keying)
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BANDPASS MODULATION: ASK

• Amplitude phase keying (APK)
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– Both amplitude and phase are altered by the digital symbol.

– An example of a 8-ary APK
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COHERENT DETECTION: BPSK

• Recall: correlation receiver of binary baseband signal 

– the output of correlation receiver is the same as the output of matched 

filter and sampler

2

21
0

aa 


  
T

dttststsa
0

2111 )()()(   
T

dttststsa
0

2122 )()()(

– Bit error probability
















02
)(

N

E
QEP d

 
T

d dttstsE
0

2

21 )]()([



16

COHERENT DETECTION: BPSK

• Recall: correlation receiver of binary baseband signal (Cont’d)

– Bit error probability with vector signal representation

• is the squared distance between the two modulation points.dE
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COHERENT DETECTION: BPSK

• Binary Phase Shift Keying (BPSK)
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COHERENT DETECTION: BPSK

• Bit error probability of BPSK
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COHERENT DETECTION: BPSK

• BPSK: revisit maximum likelihood detector
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– Likelihood function

– Maximum likelihood detection rule:

• If                               , detect 

• If                               , detect 

• Equivalently: 

– In the orthogonal representation of signal, choose the signal that 
has the smallest Euclidean distance with the received sample 
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COHERENT DETECTION: BPSK

• Example

– Find the expected number of bit errors made in one day by the following 

continuously operating coherent BPSK receiver. The data rate is 1 kbps. 

The input waveforms are                         and                               where A = 

2mV and the double-sided noise PSD is                      .  
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COHERENT DETECTION: MAXIMUM LIKELIHOOD

• Maximum Likelihood Detection

– Signal: 

– Rx Signal: 

– Correlation receiver: 

– Likelihood function
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COHERENT DETECTION: MAXIMUM LIKELIHOOD

• Maximum Likelihood Detection

– Choose          that minimizes 
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• Graphical Interpretation

– M-ary modulation, there are M constellation points:

– After correlation detector, there is an n-dimension point:

– Detection: choose       such that the Euclidean distance is minimized 
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COHERENT DETECTION

• Maximum Likelihood detection: 2-Dimension

– Choose      such that the Euclidean distance between the vector       and is
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r
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are minimized.

– Decision region example

• Whenever the received signal    is located in region 1, choose signal

• Whenever the received signal    is located in region 2, choose signal   
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COHERENT DETECTION: MPSK

• Multiple Phase Shift Keying (MPSK) 
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COHERENT DETECTION: MPSK

• MPSK coherent detection

– Structure of receiver

– Likelihood functions
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– Maximum likelihood detection

• Choose          that minimizes )(tsi
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COHERENT DETECTION: MPSK

• MPSK coherent detection (Cont’d)

– The distance between                     and 

– Maximum likelihood decision rule
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• Choose          that minimizes the distance between                      and

• Equivalently, choose         with phase         that is closest to the phase 

of the signal at the output of the correlator: 

– Find           that minimize  
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COHERENT DETECTION: MPSK

• Example:

– For a system with 8PSK, if the received symbols are:
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COHERENT DETECTION: MFSK

• Multiple frequency shift keying (MFSK)
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– The value of       can be chosen such that                  are mutually 

orthogoanal  orthogonal MFSK

• Orthogonal MFSK is a special case of MFSK

• We are only going to examine orthogonal MFSK

– Orthogonal MFSK
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COHERENT DETECTION: MFSK

• Coherent receiver structure of MFSK

– Structure of a receiver

– Output of the correlation detector for MFSK
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• Output of the correlation detector of MFSK is coordinate in 

orthogonal signal representation
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COHERENT DETECTION: MFSK 

• Maximum Likelihood detection

– Choose           that minimizes the Euclidean distance between)(tsi
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• Bit error probability of BFSK
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COHERENT DETECTION

• Vector representation of bandpass communication system

– Recall vector representation of bandpass modulated signal
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COHERENT DETECTION

• Maximum likelihood detection

– For AWGN with two-sided PSD 

• The noise variance per dimension is 

– Likelihood functions
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NONCOHERENT DETECTION

• Why noncoherent detection?

– Coherent detection requires the exact knowledge of the phase of the 
received signal

– Example: BPSK

• The distance between Tx and Rx is d

• At Tx, the signal is  tf
T

E
ts b

02cos
2

)( 

• At Rx, the signal is

• : the amount of time the signal travels from Tx to Rx

• : the phase of the signal at the receiver

• In order to perform coherent detection, the Rx needs to know

– can be estimated through a circuitry called phase locked 
loop (PLL)
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NONCOHERENT DETECTION

• Why noncoherent detection? (Cont’d)

– What if the Rx doesn’t have the knowledge of         ?

– Example:

• Assume a system operates a 1GHz. If the distance between Tx and Rx 

is 24.075m, find out the phase of the Rx signal.

)(t

• Noncoherent detection

– The Rx doesn’t require the knowledge of the absolute phase of the Rx 

signal.
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NONCOHERENT DETECTION: DPSK

• Differential PSK

– The information is carried by the phase difference between the current 

symbol and the previous symbol

• Recall: for coherent PSK, the information is carried by the absolute 

phase of one symbol.

– Example:

• The kth Rx symbol is  

• The (k+1)th Rx symbol is

• The phase difference between the two consecutive symbols
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• The information is carried by the phase difference

– The Rx doesn’t need the knowledge of the absolute phase         . The 

information is carried by the phase difference.
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NONCOHERENT DETECTION: DPSK

• Binary DPSK

– The essence of differential detection is that the data is carried in the phase 

difference between two consecutive symbols

– Tx: differential encoding; Rx: differential decoding.

– Binary differential encoding

)()1()( kmkckc 

• m(k): information

• c(k): differentially encoded bit

• : modulo-2 addition 

• – : complement 

• The information, m(k), is carried by the difference between c(k) and 

c(k-1) 
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NONCOHERENT DETECTION: DPSK

• Binary DPSK

– Binary differential decoding
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NONCOHERENT DETECTION: DPSK

• DPSK: pros and cons

– Pro:

• Doesn’t require the absolute value of the signal phase  simpler 

receiver

– Con:

• Two noisy signal are compared to detect the signal  there are twice 

as much noise as in coherent detection  the performance is worse 

compared to coherent detection

– Trade-off between complexity and performance
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NONCOHERENT DETECTION: FSK

• Non-coherent detection of FSK



NONCOHERENT DETECTION: FSK

• Non-coherent detection of FSK

– If                                        has been transmitted

• What are the values at the output of the non-coherent detector of FSK?

41



NONCOHERENT DETECTION: FSK

• Non-coherent detection of FSK

– The minimum tone space for non-coherent orthogonal FSK
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NONCOHERENT DETECTION: FSK

• Minimum Tone Spacing for Coherent Orthogonal FSK

43



NONCOHERENT DETECTION

• Coherent detection v.s. non-coherent detection
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COMPLEX ENVELOPE

• Complex representation of bandpass modulated signal
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• Complex envelope  

– The complex baseband signal           is called complex envelope

• The envelope of the bandpass signal.

– The complex envelope is the same as the vector representation of the 

signal up to a scaling factor
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COMPLEX ENVELOPE

• Complex envelope

)(|)(|)( tjetgtg – Polar representation
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COMPLEX ENVELOPE

• Bandpass modulation can be divided into two steps (Constellation)

– 1. Baseband modulation: 

• Transfer information (‘1’s and ‘0’s) into complex envelope

• Example: 8PSK 

1 0 0 0 1 0 1 1 1 0 0 1

– 2. Frequency upconversion 

• Multiply the complex envelope with tfj
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COMPLEX ENVELOPE

• Quadrature implementation of a modulator

– Baseband modulation:

• Mapping ‘0’s and ‘1’s to the values of x(t) and y(t).

– Frequency upconversion:

• Upconverting the frequency of the baseband signal through 

quadrature modulation.
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COMPLEX ENVELOPE

• Quadrature implementation of a demodulator

– Frequency downconversion:

• Downconverting the frequency of the bandpass signal.

– Baseband demodulation:

• Mapping the baseband signal to ‘0’s and ‘1’s
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COMPLEX ENVELOPE: D8PSK

• D8PSK (Differential 8PSK)

– Baseband modulation

– Frequency upconversion



52

COMPLEX ENVELOPE: D8PSK

• D8PSK Demodulation

– Frequency downconversion

– Baseband demodulation
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ERROR PROBABILITY: BINARY MODULATION

• Comparison of error performance of binary system

– BER of BPSK
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ERROR PROBABILITY: BINARY MODULATION

• Comparison of error performance of binary system

– BER for coherently detected binary orthogonal FSK
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ERROR PROBABILITY: BINARY MODULATION

Coherent detection PSK > coherent detection of differentially encoded PSK > 
Differential detection of differentially encoded PSK (DPSK) > Coherent 
detection of orthogonal FSK > Noncoherent detection of orthogonal FSK.
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ERROR PROBABILITY: MPSK

• Symbol error rate for MPSK (Fig. 4.35)

– Symbol error rate (SER): # of error symbols/# of symbols transmitted
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ERROR PROBABILITY: MFSK

• SER for MFSK
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ERROR PROBABILITY: BER V.S. SER

• Relationship between BER and SER for MPSK (Fig. 4.39)

– Gray encoding: two adjacent symbols differ in 1 bit 

• At high SNR, Most of the errors are the confusion between adjacent symbols

• At high SNR, 1 symbol error approximately  corresponds to 1 bit error
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ERROR PROBABILITY: BER V.S. SER

• Relationship between BER and SER for orthogonal signals
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– The relationship is exact


