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OUTLINE

• Signals and noise

• Detection of binary signals in AWGN

• Matched Filter

• Intersymbol Interference (ISI)

• Equalization
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SIGNAL AND NOISE

• Baseband demodulation and detection

– Recover the received baseband signal from distortions caused by noise 

and intersymbol interference (ISI)

• Equivalence theorem

– The following two operations are equivalent

• 1. performing bandpass linear signal processing; 2. converting the 

processed signal to baseband.

• 1. converting the received signal to baseband; 2. performing baseband 

linear signal process.

– It’s usually more expensive to perform bandpass linear signal processing.

– Baseband demodulation/detection can be used for both bandpass system 

and baseband system.

– Simulation of communication system is usually performed in baseband 

only

• Faster simulation

• Yields the same result
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SIGNAL AND NOISE

• Binary Communication System Model 

– The transmitted signal over a symbol interval (0, T) is represented by
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– The received signal through LTI channel
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SIGNAL AND NOISE 

• Receiver structure

– Demodulation (frequency down-conversion, receiving filter)

• Recovers a waveform to an undistorted baseband signal

– Equalization

• Mitigates the effects caused by intersymbol interference (ISI).

– Detection

• Based on the demodulated signal, make decision of ‘1’ or ‘0’.
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SIGNAL AND NOISE: VECTORIAL REPRESENTATION

• N-dimensional Orthogonal Space

– Basis functions: 

– Orthogonal functions 
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– Any arbitrary finite set of waveforms

can be expressed a linear combination of N orthogonal waveforms  
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SIGNAL AND NOISE: VECTORIAL RREPSENTATION

• Vectorial signal representation

– An example of orthogonal space: Fourier series
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– Once the orthogonal space is chosen, there is a one-to-one mapping 

between           and

• The signal can be equivalently represented by the vector

– Similarly, the noise,        can also be represented by the vector

– The received signal,         can be represented by     
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SIGNAL AND NOISE: VECTORIAL REPRESENTATION

• Waveform energy

– The energy of the signal waveform         over a symbol interval T)(tsi
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– Proof

– Generalized Parsavel’s theorem.
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SIGNAL AND NOISE: VECTORIAL REPRESENTATION

• Example
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SIGNAL AND NOISE: VECTORIAL REPRESENTATION

• Representation of white noise with orthogonal waveforms

– The white noise can be represented as
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– doesn’t interfere with signal (we don’t need to consider it)

– has unlimited power (why?) 
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• Variance (power) of white noise per dimension

• If the two-sided PSD of white noise is 
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SIGNAL AND NOISE: SNR

•

– Normalized signal to noise ratio (SNR). The figure of merit in digital 

communication system.

• :  energy of 1 bit

• :  single-sided PSD of noise
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– It allows the fair comparison between systems with different modulation 

levels

• E.g. a binary modulated system and a 8-ary modulated system
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OUTLINE

• Signals and noise

• Detection of binary signals in AWGN

• Matched Filter

• Intersymbol Interference (ISI)

• Equalization
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DETECTION: MAXIMUM LIKELIHOOD DETECTION

• After receiving filter h(t):
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• After sampler

– Or:
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– the noise sample         is obtained from linear transformation of AWGN 

• is zero mean Gaussian distributed with variance  
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DETECTION: MAXIMUM LIKELIHOOD DETECTION

• Likelihood function 
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– : linear transformation of Gaussian.

– When     is transmitted,    
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DETECTION: MAXIMUM LIKELIHOOD DETECTION

• Maximum likelihood receiver

– Decision rule: for a certain threshold 

• When           , make decision that ‘1’ is transmitted.

• When           , make decision that ‘2’ is transmitted.  

• How do we choose       ?  minimize error probability.
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– The error probability when ‘1’ is transmitted.
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– The error probability when ‘2’ is transmitted.

• When     is transmitted, an error will occur if 
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DETECTION: MAXIMUM LIKELIHOOD DETECTION

• Maximum likelihood receiver (Cont’d)

– Minimize P(E)

• Differentiate P(E) with respect to 0
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DETECTION: MAXIMUM LIKELIHOOD RECEIVER

• Maximum likelihood receiver: threshold in the presence of AWGN
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– : linear transformation of Gaussian.

– When     is transmitted,    
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DETECTION: MAXIMUM LIKELIHOOD RECEIVER

• Maximum likelihood receiver: threshold in the presence of AWGN

– The decision rule that minimize P(E) when 
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DETECTION: MAXIMUM LIKELIHOOD RECEIVER

• Error probability 
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DETECTION: MAXIMUM LIKELIHOOD RECEIVER

• Example

– Assume that in a binary digital communication system, the signal component after 

receiving filter and sampling is         3V when ‘1’ is transmitted, it is          V when 

‘0’ is transmitted. If the Gaussian noise at the output of receiving filter has unit 

variance. Assume ‘1’ and ‘0’ have equal probability

• 1. Find the detection threshold.

• 2. Find the error probability. 

• 3. If the output of the receiving filter and sampler is         2.4V, what should 

we detect?

• 4. Find the values of                and   

• 5. Write the equation that can be used to solve the threshold when P(‘1’) = 0.7, 

and P(‘0’) = 0.3. Solve the threshold
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OUTLINE

• Signals and noise

• Detection of binary signals in AWGN

• Matched Filter

• Intersymbol Interference (ISI)

• Equalization
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DETECTION: MATCHED FILTER

• Error probability depends on

– 1. 
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DETECTION: MATCHED FILTER

• Matched filter: Design

– Signal:
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– SNR maximization

Cauchy-Schwartz Inequality
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DETECTION: MATCHED FILTER

• Matched filter

– The impulse response of matched filter is
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• Matched filter 

– The impulse response of matched filter is

– The SNR at the output of the matched filter is
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– the maximum output SNR depends on the input signal energy within on 

symbol and the PSD of noise.

• It doesn’t depend on the particular shape of the waveform
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DETECTION: MATCHED FILTER

• Error probability after matched filter

– Error probability
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DETECTION: BINARY SYSTEM PERFORMANCE

• Unipolar signaling

– Ats )(1

0)(2 ts

Tt 0

Tt 0

for binary ‘1’

for binary ‘0’
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DETECTION: BINARY SYSTEM PERFORMANCE

• Bipolar signaling

– Ats )(1

Ats )(2

Tt 0

Tt 0

for binary ‘1’

for binary ‘0’
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DETECTION: BINARY SYSTEM PERFORMANCE

• Orthogonal signals 
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DETECTION: BINARY SYSTEM PERFORMANCE

• Example

– Consider NRZ binary pulses with period T are transmitted along a cable 

that attenuates signal by 3dB. AWGN with two-sided PSD          watt/Hz. 

The signal is detected with a matched filter.

• 1. Assume the signal amplitude is -2 V and 2 V at the transmitter. 

Determine the maximum data rate that can be sent with a bit error rate 

(BER) of                ?

• 2. If the data rate is 64kbps. What is the signal amplitude required at 

transmitter to achieve a BER of              ?  
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DETECTION: MATCHED FILTER

• Correlation realization of matched filter 

– The output of matched filter is

 )()()( 0 tTstrtz
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DETECTION: BINARY SYSTE PERFORMANCE

• Graphic interpretation of Ed

– Vector signal representation

31
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DETECTION: BINARY SYSTE PERFORMANCE

• Graphic interpretation

– 1. unipolar signal

32
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– 3. orthogonal signal
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OUTLINE

• Signals and noise

• Detection of binary signals in AWGN

• Matched Filter

• Intersymbol Interference (ISI)

• Equalization
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ISI

• Filters in a communication system

– Composite channel impulse response (CIR), or, equivalent filter
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• Intersymbol interference (ISI)

– Due to the effects system filtering, the received pulse can “smear” into 

adjacent symbol intervals, thereby interfering with other symbols.

– ISI is introduced by filtering and channel.

– ISI will degrade system performance even in the absence of noise.

• Equivalent Discrete-Time System Model
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• Nyquist Criterion

– In order to achieve ISI-free communication, the composite impulse 
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ISI: NYQUIST FILTER

• Ideal Nyquist filter 

– If the CIR is an ideal Nyquist filter, then the symbol can be detected 

without ISI.
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• Nyquist bandwidth constraint

– A system with bandwidth W Hz can support a maximum symbol rate of  

symbols/sec without ISI.

• What is the maximum bandwidth efficiency for M-ary modulation 

without ISI?
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ISI: NYQUIST FILTER

• Nyquist filter

– A general class of filters that satisfy zero ISI at the sampling points

• Ideal Nyquist filter (rectangular filter, sinc pulse) is one type of 

Nyquist filter

– Frequency domain:

• Ideal nyquist filter                   convolves with any real even-

symmetric function leads to a Nyquist filter.

– Time domain

• Ideal Nyquist pulse                     multiplied by another time function 

 Nyquist pulse

– Most popular Nyquist filter

• Raised cosine filter
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ISI: PULSE SHAPING

• Pulse shaping

– Design transmit filters and receive filters such that the overall CIR,                               

is a Nyquist pulse  Reduce ISI

– Limit the bandwidth of the transmitted signal

• Raised-cosine filter: frequency domain 

– Frequency domain response
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– W: absolute bandwidth

– minimum Nyquist bandwidth to support a symbol rate of

– excessive bandwidth 

– roll-off factor             
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ISI: PULSE SHAPING

• Raised-cosine filter: time domain

– Time domain response
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• Raised-cosine filter: roll-off factor

– ideal Nyquist filter 

• Minimum bandwidth in frequency domain:                  

• Large tail in time domain  a small sampling timing error will 

introduce large ISI 

–

• large bandwidth:                    

• Small tail in time domain  Less susceptible to sampling timing 

error 
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ISI: PULSE SHAPING

• Square-root raised cosine 

– Raised cosine is the overall response

• is a raised cosine filter   

• is a raised cosine filter                                       )()()()( fHfHfHfH rct

)()()()( thththth rct 

– For AWGN channel

– Square-root raised cosine filter
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ISI: PERFORMANCE DEGRADATION

• Two types of performance degradation 

– 1. Loss in 

• Can be compensated by increasing signal power

– 2. Signal distortion

• E.g. ISI

• Error floor occurs

• Cannot be compensated by increasing SNR.
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ISI

• Example

– A 4-level PAM pulse sequence has a data rate of R = 2400 bps. What is 

the theoretical minimum bandwidth needed for the signal without ISI?

– If the signal is passed through a raised-cosine filter with 60% excessive 

bandwidth. Find the bandwidth of the signal at the output of the filter

– The above sequence is modulated onto a carrier wave so that the baseband 

spectrum is shifted and centered at frequency       . Find the DSB bandpass 

bandwidth. 

0f



43

OUTLINE

• Signals and noise

• Detection of binary signals in AWGN

• Intersymbol Interference (ISI)

• Matched Filter

• Equalization
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EQUALIZATION

• Equalization

– Any signal processing or filtering technique that is designed to eliminate 

or reduce ISI.

– For AWGN channel,

• ISI-free communication can be achieved by using square-root raised 

cosine filter as both transmit filter and receiving filter

– is raised cosine (Nyquist filter). 

– For general channel,          will introduce ISI

• Equalization is required.
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Tx filter

EQUALIZATION: DISCRETE-TIME MODEL

• Discrete-time system model

Rx filter
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• Depends on: 1. Tx filter, 2. Channel, 3. Rx filter, 4. Sampling period
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EQUALIZATION: DISCRETE-TIME MODEL

• Discrete-time system model examples

– Example 1: AWGN channel with square root raised cosine filters
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EQUALIZATION: DISCRETE-TIME MODEL

• Discrete-time system model examples 

– Example 2: Two tap equal gain channel
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EQUALIZATION

• A possible equalization method:

– At time 1,                                            (no ISI) 

– At time 2,                                                          

– At time 3,                                                          

– Problem: if          is in error, all the remaining symbols will be affected!

• Error propagation.
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EQUALIZATION: CLASSIFICATION

• Classification: based on linearity

– Linear:

• Zero-forcing (ZF), minimum mean square error (MMSE)

– Non-linear

• Decision feedback equalization (DFE)

• Maximum likelihood sequence estimation (MLSE) (Optimum)

• Classification: based on nature of operation

– Transversal equalizer

• ZF, MMSE

• E.g. Choose equalization filter with frequency response 

– Transversal filter + feedback filter: 

• DFE

– Trellis based equalizer

• MLSE
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EQUALIZATION: TRANSVERSAL EQUALIZER

• Transversal equalizer 

– Suppressing the effects of ISI by passing the received samples through a 
linear filter
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EQUALIZATION: TRANSVERSAL EQUALIZER

• Transversal equalizer: Matrix representation
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– Example

• Consider a transversal equalizer with 3 taps (N = 1). The ISI and 

noise distorted received samples are                                                      ,

represent the transversal equalizer in matrix format

NNn ,,
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EQUALIZATION: TRANSVERSAL EQUALIZER

• How do we determine the equalizer coefficients?

– The operation of equalizer contains two steps: 1. training, 2. transmission

– Training:

• Before transmission of the actual data, the transmitter sends a known 
sequence.

– Could be a single narrow pulse

– Or, a pseudo-noise sequence.

• When the training sequence arrives at receiver, it is distorted by ISI 
and noise  The distorted training sequence contains information 
about the channel

• The receiver calculates the equalizer coefficients based on the ISI and 
noise distorted training sequence.

– ZF criterion

– MMSE criterion

– Data transmission

• Once the equalizer coefficients have been trained, the Tx can send 
actual data.

NNncn ,,, 
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EQUALIZATION: ZF

• Zero-forcing equalization

– During the training stage, calculate the transversal equalizer coefficients 

based on the zero-forcing criterion.

– Training sequence: 

– Zero-forcing:

• Selecting           such that the output of the equalizer is 

– Force the elements of        to be zero when  
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EQUALIZATION: ZF

• Zero-forcing equalization: example

– During the training stage, a impulse is transmitted, and the received 

distorted samples are                                                         . 

• Find the zero-forcing equalization coefficients

• Find the output of the equalizer when the distorted samples are at the 

input.
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EQUALIZATION: MMSE

• Minimum mean square error (MMSE) equalizer

– Minimize the mean square error (variance of error)

– Training sequence

– MMSE:

• Error: 

• MSE: 

• MMSE: Selecting        such that the MSE,       ,is minimized 

• Solution:
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