Department of Electrical Engineering University of Arkansas

ELEG5663 Communication Theory Ch. 3 Baseband Demodulation and Detection

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Signals and noise
- Detection of binary signals in AWGN
- Matched Filter
- Intersymbol Interference (ISI)
- Equalization

SIGNAL AND NOISE

Baseband demodulation and detection

- Recover the received baseband signal from distortions caused by noise and intersymbol interference (ISI)
- Equivalence theorem
 - The following two operations are equivalent
 - 1. performing bandpass linear signal processing; 2. converting the processed signal to baseband.
 - 1. converting the received signal to baseband; 2. performing baseband linear signal process.
 - It's usually more expensive to perform bandpass linear signal processing.
 - Baseband demodulation/detection can be used for both bandpass system and baseband system.
 - Simulation of communication system is usually performed in baseband only
 - Faster simulation
 - Yields the same result

SIGNAL AND NOISE

Binary Communication System Model

- The transmitted signal over a symbol interval (0, T) is represented by

 $s_i(t) = \begin{cases} s_1(t), & 0 \le t \le T, & 1' \\ s_2(t), & 0 \le t \le T, & 0' \end{cases}$

- The received signal through LTI channel

 $r(t) = s_i(t) \otimes h_c(t) + n(t)$

- For ideal distortionless channel, $h_c(t) = \delta(t)$

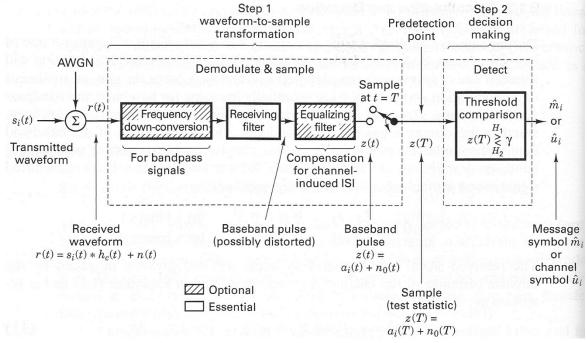
 $r(t) = s_i(t) + n(t)$

• AWGN channel

SIGNAL AND NOISE

• Receiver structure

- Demodulation (frequency down-conversion, receiving filter)
 - Recovers a waveform to an undistorted baseband signal
- Equalization
 - Mitigates the effects caused by intersymbol interference (ISI).
- Detection
 - Based on the demodulated signal, make decision of '1' or '0'.



N-dimensional Orthogonal Space

- Basis functions: $\Psi_j(t)$ $j = 1, 2, \dots, N$
- Orthogonal functions

$$\int_0^T \psi_j(t) \psi_k(t) dt = K_j \delta_{jk}$$

$$\delta_{jk} = \begin{cases} 1, & j = k \\ 0, & otherwise \end{cases}$$

- If $K_j = 1$: orthonormal
- Any arbitrary finite set of waveforms $\{s_j(t)\}$ $j=1,\dots,M$ can be expressed a linear combination of N orthogonal waveforms

$$s_{1}(t) = a_{11}\psi_{1}(t) + a_{12}\psi_{2}(t) + \dots + a_{1N}\psi_{N}(t)$$

$$s_{2}(t) = a_{21}\psi_{1}(t) + a_{22}\psi_{2}(t) + \dots + a_{2N}\psi_{N}(t)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$s_{M}(t) = a_{M1}\psi_{1}(t) + a_{M2}\psi_{2}(t) + \dots + a_{MN}\psi_{N}(t)$$
N

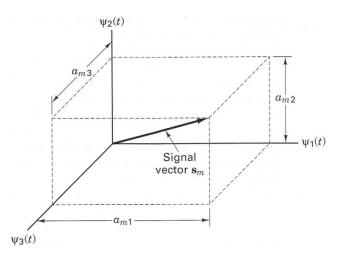
$$s_{i}(t) = \sum_{j=1}^{N} a_{ij} \psi_{j}(t) \qquad a_{ij} = \frac{1}{K_{j}} \int_{0}^{T} s_{i}(t) \psi_{j}(t) dt$$

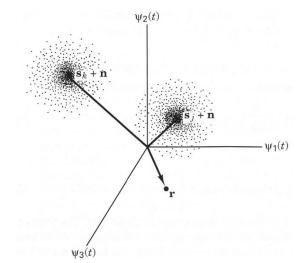
• Vectorial signal representation

- An example of orthogonal space: Fourier series

$$\psi_k(t) = e^{j\frac{2\pi n}{T}t} \qquad \qquad s(t) = \sum_n a_n e^{j\frac{2\pi n}{T}t}$$

- Once the orthogonal space is chosen, there is a one-to-one mapping between $s_i(t)$ and $\mathbf{s}_i = (a_{i1}, a_{i2}, \dots, a_{iN})$
 - The signal can be equivalently represented by the vector $\mathbf{s}_i = (a_{i1}, a_{i2}, \dots, a_{iN})$
- Similarly, the noise, n(t) can also be represented by the vector $\mathbf{n} = (n_1, n_2, \dots, n_N)$
- The received signal, r(t) can be represented by $\mathbf{r} = \mathbf{s}_i + \mathbf{n}$





• Waveform energy

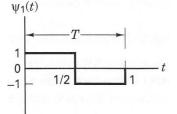
- The energy of the signal waveform $s_i(t)$ over a symbol interval T

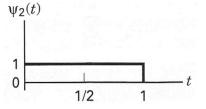
$$E_{i} = \int_{0}^{T} s_{i}^{2}(t) dt = \sum_{j=1}^{N} a_{ij}^{2} K_{j}$$

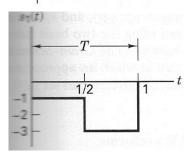
– Proof

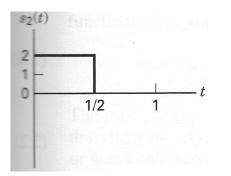
- Generalized Parsavel's theorem.

• **Example** $\psi_1(t)$









- Representation of white noise with orthogonal waveforms
 - The white noise can be represented as

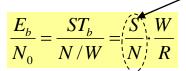
 $n(t) = \sum_{j=1}^{N} n_j \psi_j(t) + \widetilde{n}(t) \qquad \qquad n(t) \Leftrightarrow \mathbf{n} = (n_1, n_2, \dots, n_N)$

- $\tilde{n}(t)$ doesn't interfere with signal (we don't need to consider it)
- n(t) has unlimited power (why?)
 - But $n(t) \tilde{n}(t)$ has limited power.
- Variance (power) of white noise per dimension
 - If the two-sided PSD of white noise is $\frac{N_0}{2}$

$$\sigma^2 = E\left\{\left[\int_0^T n(t)\psi_j(t)dt\right]^2\right\} =$$

SIGNAL AND NOISE: SNR

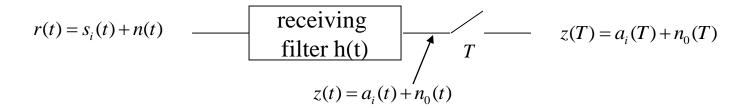
- E_b / N_0
 - Normalized signal to noise ratio (SNR). The figure of merit in digital communication system.
 - E_b : energy of 1 bit
 - N_0 : single-sided PSD of noise SNR



- It allows the fair comparison between systems with different modulation levels
 - E.g. a binary modulated system and a 8-ary modulated system

OUTLINE

- Signals and noise
- Detection of binary signals in AWGN
- Matched Filter
- Intersymbol Interference (ISI)
- Equalization



• After receiving filter h(t):

 $a_i(t) = s_i(t) \otimes h(t) \qquad \qquad n_0(t) = n(t) \otimes h(t)$

 $z(t) = a_i(t) + n_0(t)$

• After sampler

$$z(T) = a_i(T) + n_0(T)$$

– Or:

$$z = a_i + n_0$$

- the noise sample n_0 is obtained from linear transformation of AWGN
 - n_0 is zero mean Gaussian distributed with variance σ_0^2

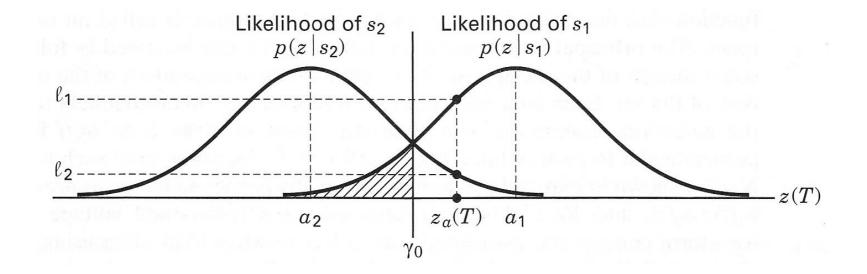
$$p_{n_0}(x) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{x^2}{2\sigma_0^2}\right]$$

• Likelihood function

 $z = a_i + n_0$

- n_0 : linear transformation of Gaussian. $n_0 \sim N(0, \sigma_0^2)$
- When a_i is transmitted, $z | a_i \sim N(a_i, \sigma_0^2)$

$$p(z \mid s_i) = p(z \mid a_i) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{z - a_i}{\sigma_0}\right)^2\right]$$
 likelihood function



• Maximum likelihood receiver

- Decision rule: for a certain threshold γ_0
 - When $z > \gamma_0$, make decision that '1' is transmitted.
 - When $z < \gamma_0$, make decision that '2' is transmitted.
 - How do we choose γ_0 ? \rightarrow minimize error probability.
- The error probability when '1' is transmitted.

 $P(E | s_1) = P(\text{choose '2'} | s_1) = P(z < \gamma_0 | s_1)$

- When s_1 is transmitted, an error will occur if $z < \gamma_0$ $P(E \mid s_1) = P(z < \gamma_0 \mid s_1) = \int_{-\infty}^{\gamma_0} p(z \mid s_1) dz$
- The error probability when '2' is transmitted.
 - When s_2 is transmitted, an error will occur if $z > \gamma_0$

$$P(E \mid s_2) = P(z > \gamma_0 \mid s_2) = \int_{\gamma_0}^{+\infty} p(z \mid s_2) dz$$

– Error probability:

$$P(E) = P(E \mid s_2)P(s_2) + P(E \mid s_1)P(s_1)$$
$$= P(s_1) \int_{-\infty}^{\gamma_0} p(z \mid s_1) dz + P(s_2) \int_{\gamma_0}^{+\infty} p(z \mid s_2) dz$$

- Maximum likelihood receiver (Cont'd)
 - Minimize P(E)
 - Differentiate P(E) with respect to γ_0

$$\frac{\partial P(E)}{\partial \gamma_0} = p(\gamma_0 \mid s_1) P(s_1) - p(\gamma_0 \mid s_2) P(s_2)$$
$$\frac{\partial P(E)}{\partial P(E)}$$

- Optimum $\gamma_0 \rightarrow \frac{\partial F(E)}{\partial \gamma_0} = 0$
 - The optimum threshold should satisfy the following condition

$$\frac{p(\gamma_0 \,|\, s_1)}{p(\gamma_0 \,|\, s_2)} = \frac{P(s_2)}{P(s_1)}$$

• Maximum likelihood receiver: threshold in the presence of <u>AWGN</u>

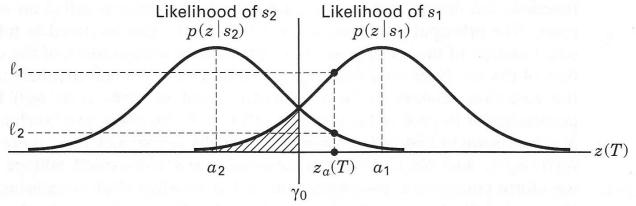
$$z = a_i + n_0$$

- n_0 : linear transformation of Gaussian. $n_0 \sim N(0, \sigma_0^2)$
- When a_i is transmitted, $z | a_i \sim N(a_i, \sigma_0^2)$

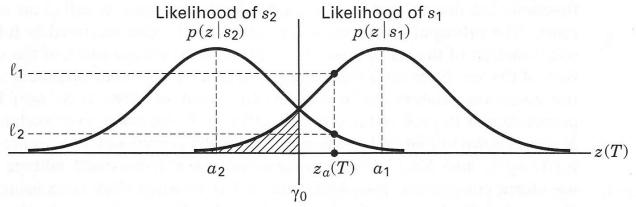
$$p(z \mid s_i) = p(z \mid a_i) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{z - a_i}{\sigma_0}\right)^2\right]$$
 likelihood function

- the threshold γ_0 when $P(s_1) = P(s_2)$

$$\gamma_0 = \frac{a_1 + a_2}{2}$$



- Maximum likelihood receiver: threshold in the presence of <u>AWGN</u>
 - The decision rule that minimize P(E) when $P(s_1) = P(s_2)$
 - $\frac{p(z|s_1)}{p(z|s_2)} > 1 \implies `1' \qquad \frac{p(z|s_1)}{p(z|s_2)} < 1 \implies `2'$ $\text{ Likelihood function: } p(z|s_1) \qquad p(z|s_2)$ $\text{ Likelihood ratio: } \frac{p(z|s_1)}{p(z|s_2)}$



• Error probability

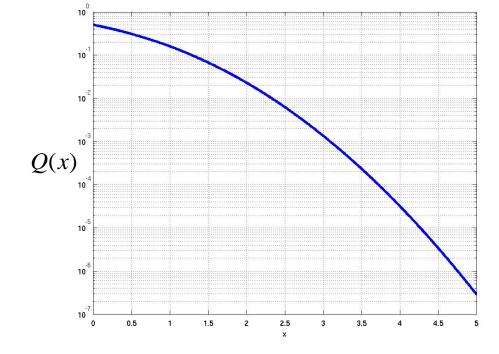
- Definition: Gaussian Q function:
- Error probability:

$$P(E \mid s_1) = \int_{-\infty}^{\gamma_0} p(z \mid s_1) dz =$$

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp\left(-\frac{u^{2}}{2}\right) du$$

$$P(E \mid s_2) = \int_{\gamma_0}^{+\infty} p(z \mid s_2) dz =$$

$$P(E) = Q\left(\frac{a_1 - a_2}{2\sigma_0}\right)$$



• Example

- Assume that in a binary digital communication system, the signal component after receiving filter and sampling is $a_1 = 3V$ when '1' is transmitted, it is $a_2 = 1V$ when '0' is transmitted. If the Gaussian noise at the output of receiving filter has unit variance. Assume '1' and '0' have equal probability
 - 1. Find the detection threshold.
 - 2. Find the error probability.
 - 3. If the output of the receiving filter and sampler is z = 2.4V, what should we detect?
 - 4. Find the values of $p(z | s_1)$ and $p(z | s_2)$
 - 5. Write the equation that can be used to solve the threshold when P('1') = 0.7, and P('0') = 0.3. Solve the threshold

OUTLINE

- Signals and noise
- Detection of binary signals in AWGN
- Matched Filter
- Intersymbol Interference (ISI)
- Equalization

$$P(E) = Q\left(\frac{a_1 - a_2}{2\sigma_0}\right)$$

• Error probability depends on

$$- 1. \quad a_1 - a_2$$

$$a_i = \int_{-\infty}^{+\infty} s_i (T - \tau) h(\tau) d\tau$$

$$a_1 - a_2 = \int_{-\infty}^{+\infty} [s_1 (T - \tau) - s_2 (T - \tau)] h(\tau) d\tau = \int_{-\infty}^{+\infty} s_0 (T - \tau) h(\tau) d\tau$$

$$\cdot a_1 - a_2 \quad \text{depends on:} \quad s_0(t) = s_1(t) - s_2(t) \quad \text{and} \quad h(t)$$

$$- 2. \quad \sigma_0$$

 $n_0(t) = \int_{-\infty}^{+\infty} n(T-\tau)h(\tau)d\tau$

• σ_0 depends on: n(t) and h(t)

- We want to design receiving filter h(t) to maximize the following SNR:

$$\frac{(a_1 - a_2)^2}{\sigma_0^2} = \frac{\left| \int_{-\infty}^{+\infty} s_0(T - \tau) h(\tau) d\tau \right|^2}{\sigma_0^2}$$

$$r(t) = s_i(t) + n(t)$$

 h(t) $T - z(T) = a_i(T) + n_0(T)$
 $z(t) = a_i(t) + n_0(t)$

• Matched filter: Design

– Signal:

inverse Fourier transform

$$A_{0}(f) = S_{0}(f)H(f) \Rightarrow a_{0}(t) = \int_{-\infty}^{+\infty} S_{0}(f)H(f)e^{j2\pi f t} df$$
$$[a_{0}(T)]^{2} = \left|\int_{-\infty}^{+\infty} S_{0}(f)H(f)e^{j2\pi f T} df\right|^{2}$$

- noise:

$$\psi_n(f) = \frac{N_0}{2} |H(f)|^2 \Rightarrow \sigma_0^2 = \frac{N_0}{2} \int_{-\infty}^{+\infty} |H(f)|^2 df$$

- SNR maximization

Cauchy-Schwartz Inequality

$$\left|\int f(x)g(x)dx\right|^{2} \leq \int \left|f(x)\right|^{2} dx \int \left|g(x)\right|^{2} dx$$

- Equality holds if
$$g(x) = kf^*(x)$$

• Matched filter

– The impulse response of matched filter is

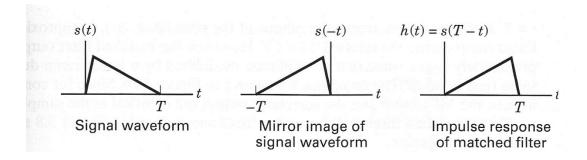
 $h(t) = k s_0^* (T - t)$

- The SNR at the output of the matched filter is

$$\max\left(\frac{(a_1 - a_2)^2}{\sigma_0^2}\right) = \frac{2E_d}{N_0}$$

$$E_d = \int_{-\infty}^{+\infty} |S_0(f)|^2 df$$

- the maximum output SNR depends on the input signal energy within on symbol and the PSD of noise.
 - It doesn't depend on the particular shape of the waveform



• Error probability after matched filter

– Error probability

$$P(E) = Q\left(\frac{a_1 - a_2}{2\sigma_0}\right)$$

– After matched filter

$$\frac{(a_1 - a_2)^2}{\sigma_0^2} = \frac{2E_d}{N_0} \qquad P(E) = Q\left(\sqrt{\frac{E_d}{2N_0}}\right)$$

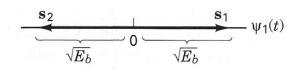
$$E_{d} = \int_{-\infty}^{+\infty} |S_{0}(f)|^{2} df = \int_{0}^{T} [s_{1}(t) - s_{2}(t)]^{2} dt$$

• Unipolar signaling

_	$s_1(t) = A$	$0 \le t \le T$	for binary '1'
	$s_2(t) = 0$	$0 \le t \le T$	for binary '0'

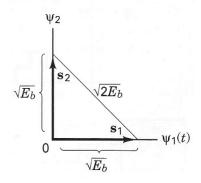
• Bipolar signaling

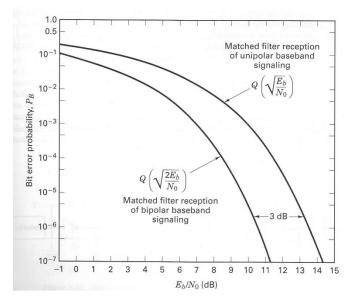
_	$s_1(t) = A$	$0 \le t \le T$	for binary '1'
	$s_2(t) = -A$	$0 \le t \le T$	for binary '0'



Orthogonal signals

$$- \int_0^T s_1(t)s_2(t)dt = 0 \qquad \int_0^T s_1^2(t)dt = \int_0^T s_2^2(t)dt = E_b$$





 $\sqrt{E_d}$ equals to the Euclidean distance between the constellation points.

• Example

- Consider NRZ binary pulses with period *T* are transmitted along a cable that attenuates signal by 3dB. AWGN with two-sided PSD 10⁻³ watt/Hz. The signal is detected with a matched filter.
 - 1. Assume the signal amplitude is -2 V and 2 V at the transmitter. Determine the maximum data rate that can be sent with a bit error rate (BER) of $P_B \le 10^{-3}$?
 - 2. If the data rate is 64kbps. What is the signal amplitude required at transmitter to achieve a BER of $P_B \le 10^{-3}$?

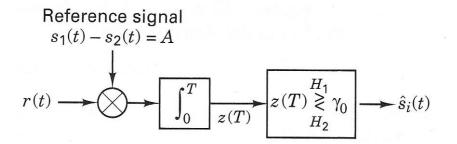
• Correlation realization of matched filter

- The output of matched filter is

 $z(t) = r(t) \otimes s_0(T-t) =$

- The correlation between r(t) and z(t)

$$z_i(T) = \int_0^T r(\tau) s_i(\tau) d\tau$$



• Graphic interpretation of *E*_d

- Vector signal representation

$$s_i(t) = \sum_{j=1}^N a_{ij} \psi_j(t)$$

$$- E_d = \int_0^T [s_1(t) - s_2(t)]^2 dt =$$

$$E_d = \sum_{j=1}^N (a_{1j} - a_{2j})^2$$

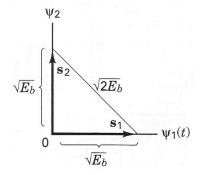
 $-\sqrt{E_d}$ is the distance between two points in an N-dimension Euclidean space

 $\mathbf{a}_1 = [a_{11}, \cdots, a_{1N}]$ $\mathbf{a}_2 = [a_{21}, \cdots, a_{2N}]$

Graphic interpretation

- 1. unipolar signal
$$s_1(t) = A$$
 $0 \le t \le T$
 $s_2(t) = 0$ $0 \le t \le T$

- 2. bipolar signal
$$s_1(t) = A$$
 $0 \le t \le T$
 $s_2(t) = -A$ $0 \le t \le T$ $\underbrace{s_2}_{\sqrt{E_b}} \qquad \underbrace{s_1}_{\sqrt{E_b}} \qquad \psi_1(t)$

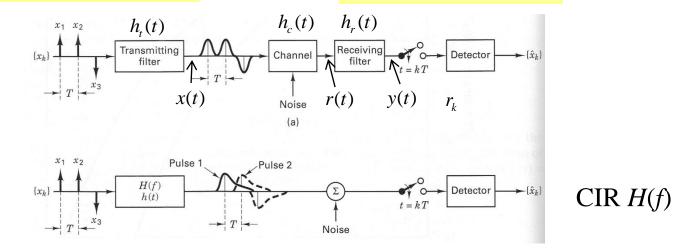


OUTLINE

- Signals and noise
- Detection of binary signals in AWGN
- Matched Filter
- Intersymbol Interference (ISI)
- Equalization

• Filters in a communication system

- Composite channel impulse response (CIR), or, equivalent filter $h(t) = h_t(t) \otimes h_c(t) \otimes h_r(t)$ $H(f) = H_t(f)H_c(f)H_r(f)$



r(t) =

Equivalent Discrete-Time System Model

$$y_n = \sum_{k=-\infty}^{\infty} x_k h_{n-k} + v_n$$

• Intersymbol interference (ISI)

- Due to the effects system filtering, the received pulse can "smear" into adjacent symbol intervals, thereby interfering with other symbols.
- ISI is introduced by filtering and channel.
- ISI will degrade system performance even in the absence of noise.

• Nyquist Criterion

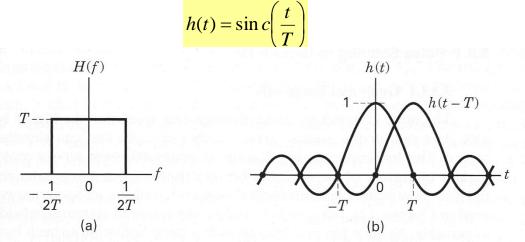
In order to achieve ISI-free communication, the composite impulse response (CIR) must satisfy

$$h_n = h(nT) = \begin{cases} K, & n = 0\\ 0, & n \neq 0 \end{cases}$$

ISI: NYQUIST FILTER

• Ideal Nyquist filter

 If the CIR is an ideal Nyquist filter, then the symbol can be detected without ISI.



• Nyquist bandwidth constraint

- A system with bandwidth W Hz can support a maximum symbol rate of $R_s = 2W$ symbols/sec without ISI.
 - What is the maximum bandwidth efficiency for M-ary modulation without ISI?

ISI: NYQUIST FILTER

• Nyquist filter

- A general class of filters that satisfy zero ISI at the sampling points
 - Ideal Nyquist filter (rectangular filter, sinc pulse) is one type of Nyquist filter
- Frequency domain:
 - Ideal nyquist filter $T_s rect(fT_s)$ convolves with any real evensymmetric function leads to a Nyquist filter.
- Time domain
 - Ideal Nyquist pulse $\sin c(t/T_s)$ multiplied by another time function Nyquist pulse
- Most popular Nyquist filter
 - Raised cosine filter

ISI: PULSE SHAPING

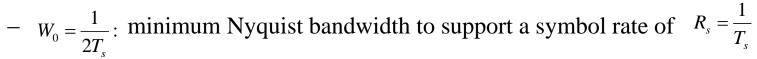
Pulse shaping

- − Design transmit filters and receive filters such that the overall CIR, $h(t) = h_t(t) \otimes h_c(t) \otimes h_r(t)$ is a Nyquist pulse → Reduce ISI
- Limit the bandwidth of the transmitted signal

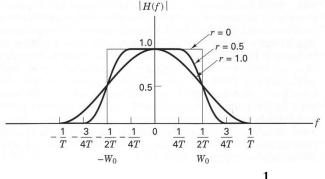
Raised-cosine filter: frequency domain

- Frequency domain response

$$H(f) = \begin{cases} 1 & |f| < 2W_0 - W \\ \cos^2 \left(\frac{\pi}{4} \frac{|f| + W - 2W_0}{W - W_0}\right) & 2W_0 - W < |f| < W \\ 0 & |f| > W \end{cases}$$



-
$$W - W_0$$
: excessive bandwidth
- $r = (W - W_0)/W_0$: roll-off factor
 $W = (1+r)W_0 = \frac{1}{2}(1+r)R_s$



ISI: PULSE SHAPING

• Raised-cosine filter: time domain

- Time domain response

 $h(t) = 2W_0 \sin c (2W_0 t) \frac{\cos[2\pi (W - W_0)t]}{1 - [4(W - W_0)t]^2}$

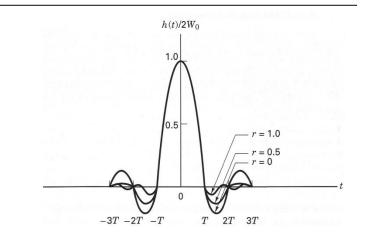
- Raised-cosine filter: roll-off factor
 - r=0: ideal Nyquist filter
 - Minimum bandwidth in frequency domain: $W = R_s / 2$ ③
 - Large tail in time domain → a small sampling timing error will introduce large ISI ☺

r=1:

- large bandwidth: $W = R_s$ \otimes
- Small tail in time domain → Less susceptible to sampling timing error ☺

$$W = (1+r)W_0 = \frac{1}{2}(1+r)R_s$$

Baseband bandwidth



$$W_{DSB} = 2(1+r)W_0 = (1+r)R_s$$

Bandpass bandwidth

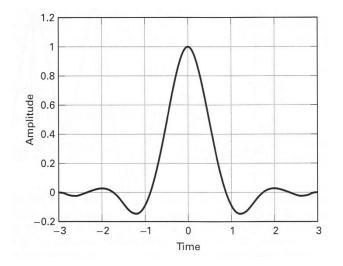
ISI: PULSE SHAPING

• Square-root raised cosine

- Raised cosine is the overall response
 - $h(t) = h_t(t) \otimes h_c(t) \otimes h_r(t)$ is a raised cosine filter
 - $H(f) = H_t(f)H_c(f)H_r(f)$ is a raised cosine filter
- For AWGN channel $H_c(f) = 1$
- Square-root raised cosine filter

$$H_t(f) = \sqrt{H(f)}$$

$$H_r(f) = \sqrt{H(f)}$$

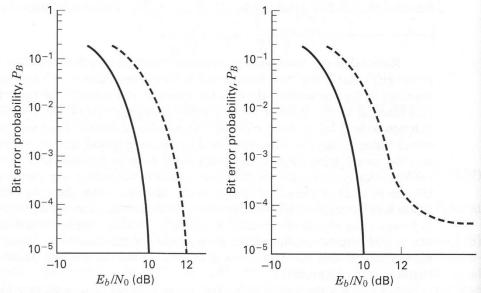


$$h_{t}(t) = \frac{\sqrt{2R_{s}}}{1 - 64r^{2}R_{s}^{2}t^{2}} \left[\frac{\sin(2\pi R_{s}(1 - r)t)}{2\pi R_{s}t} + \frac{4r}{\pi}\cos(2\pi R_{s}(1 + r)t) \right]$$

ISI: PERFORMANCE DEGRADATION

Two types of performance degradation

- 1. Loss in E_b / N_0
 - Can be compensated by increasing signal power
- 2. Signal distortion
 - E.g. ISI
 - Error floor occurs
 - Cannot be compensated by increasing SNR.



• Example

- A 4-level PAM pulse sequence has a data rate of R = 2400 bps. What is the theoretical minimum bandwidth needed for the signal without ISI?
- If the signal is passed through a raised-cosine filter with 60% excessive bandwidth. Find the bandwidth of the signal at the output of the filter
- The above sequence is modulated onto a carrier wave so that the baseband spectrum is shifted and centered at frequency f_0 . Find the DSB bandpass bandwidth.

OUTLINE

- Signals and noise
- Detection of binary signals in AWGN
- Intersymbol Interference (ISI)
- Matched Filter
- Equalization

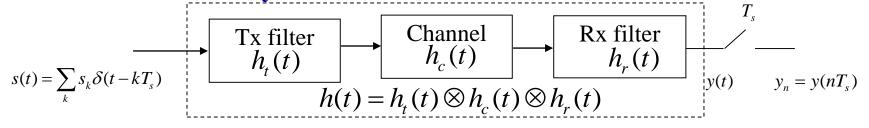
EQUALIZATION

Equalization

- Any signal processing or filtering technique that is designed to eliminate or reduce ISI.
- For AWGN channel, $h_c(t) = \delta(t)$
 - ISI-free communication can be achieved by using square-root raised cosine filter as both transmit filter and receiving filter
 - $h(t) = h_t(t) \otimes \delta(t) \otimes h_r(t)$ is raised cosine (Nyquist filter).
- For general channel, $h_c(t)$ will introduce ISI
 - Equalization is required.

EQUALIZATION: DISCRETE-TIME MODEL

Discrete-time system model



– Signal after Rx filter

y(t) =

– Signal after Sampler

 $y_n =$

- Discrete-time CIR $h_n = h(nT_s)$
 - Depends on: 1. Tx filter, 2. Channel, 3. Rx filter, 4. Sampling period

 V_n

Equivalent discrete-time system model

EQUALIZATION: DISCRETE-TIME MODEL

• Discrete-time system model examples

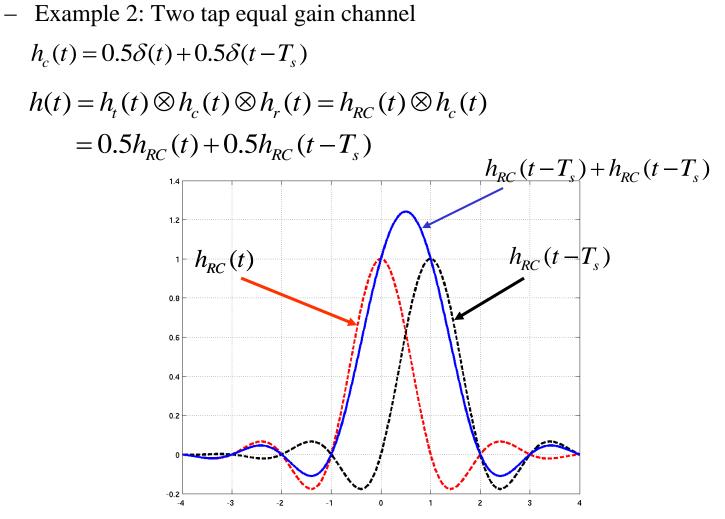
- Example 1: AWGN channel with square root raised cosine filters $h_c(t) = \delta(t)$

$$h(t) = h_t(t) \otimes \delta(t) \otimes h_r(t) = h_{RC}(t)$$
$$h_n = h(nT_s) = \delta(n) = \begin{cases} 1, & n = 0\\ 0, & n \neq 0 \end{cases}$$

$$y_n = s_n \otimes \delta(n) + v_n = s_n + v_n$$

EQUALIZATION: DISCRETE-TIME MODEL

Discrete-time system model examples



EQUALIZATION

- A possible equalization method:
 - At time 1, $y_1 = h_0 x_1 + 0 + v_1$ (no ISI) \Rightarrow $\hat{x}_1 = y_1 / h_0$
 - At time 2, $y_2 = h_0 x_2 + h_1 x_1 + v_2 \rightarrow \hat{x}_2 = [y_2 h_1 \hat{x}_1] / h_0$
 - At time 3, $y_3 = h_0 x_3 + h_1 x_2 + v_3 \rightarrow \hat{x}_3 = [y_3 h_1 \hat{x}_2] / h_0$
 - Problem: if \$\hightarrow 1_1\$ is in error, all the remaining symbols will be affected!
 Error propagation.

EQUALIZATION: CLASSIFICATION

• Classification: based on linearity

- Linear:
 - Zero-forcing (ZF), minimum mean square error (MMSE)
- Non-linear
 - Decision feedback equalization (DFE)
 - Maximum likelihood sequence estimation (MLSE) (Optimum)
- Classification: based on nature of operation
 - Transversal equalizer
 - ZF, MMSE

• E.g. Choose equalization filter with frequency response $H_e(f) = \frac{1}{H_e(f)}$

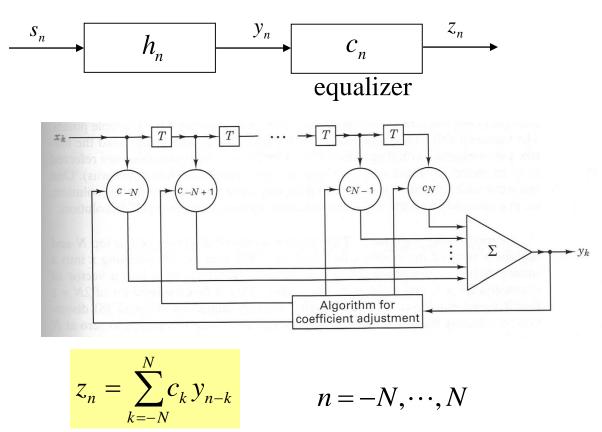
 $H(f) = H_t(f)H_c(f)H_r(f)H_e(f) = H_{RC}(f)$

- Transversal filter + feedback filter:
 - DFE
- Trellis based equalizer
 - MLSE

EQUALIZATION: TRANSVERSAL EQUALIZER

Transversal equalizer

Suppressing the effects of ISI by passing the received samples through a linear filter



EQUALIZATION: TRANSVERSAL EQUALIZER

• Transversal equalizer: Matrix representation

$$z_{n} = \sum_{k=-N}^{N} c_{k} y_{n-k}, \qquad n = -N, \dots, N$$

$$\begin{bmatrix} z_{-N} \\ \vdots \\ z_{0} \\ \vdots \\ z_{N} \end{bmatrix} = \begin{bmatrix} y_{0} & y_{-1} & y_{-2} & \dots & y_{-2N} \\ y_{1} & y_{0} & y_{-1} & \dots & y_{-2N+1} \\ \vdots & \vdots & \vdots & & \\ y_{2N-1} & \dots & y_{1} & y_{0} & y_{-1} \\ y_{2N} & \dots & y_{2} & y_{1} & y_{0} \end{bmatrix} \begin{bmatrix} c_{-N} \\ \vdots \\ c_{0} \\ \vdots \\ c_{N} \end{bmatrix}$$

$$\mathbf{z} = \mathbf{Y} \mathbf{c}$$

- Example
 - Consider a transversal equalizer with 3 taps (N = 1). The ISI and noise distorted received samples are y(-3:3) = [0,0.2,0.9,-0.3,0.1], represent the transversal equalizer in matrix format

EQUALIZATION: TRANSVERSAL EQUALIZER

- How do we determine the equalizer coefficients? $c_n, n = -N, \dots, N$
 - The operation of equalizer contains two steps: 1. training, 2. transmission
 - Training:
 - Before transmission of the actual data, the transmitter sends a known sequence.
 - Could be a single narrow pulse
 - Or, a pseudo-noise sequence.
 - When the training sequence arrives at receiver, it is distorted by ISI and noise → The distorted training sequence contains information about the channel
 - The receiver calculates the equalizer coefficients based on the ISI and noise distorted training sequence.
 - ZF criterion
 - MMSE criterion
 - Data transmission
 - Once the equalizer coefficients have been trained, the Tx can send actual data.

EQUALIZATION: ZF

• Zero-forcing equalization

- During the training stage, calculate the transversal equalizer coefficients based on the zero-forcing criterion.
- Training sequence: $s_n = \delta(n)$
- Zero-forcing:
 - Selecting $\{c_n\}$ such that the output of the equalizer is $z_n = \delta(n)$
 - Force the elements of z_n to be zero when $n \neq 0$

$$\mathbf{z} = [0, \dots, 0, 1, 0, \dots, 0]^T$$

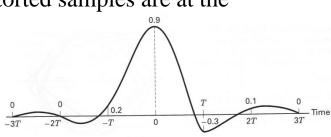
 $\mathbf{z} = \mathbf{Y}\mathbf{c}$

$$\mathbf{c} = \mathbf{Y}^{-1}\mathbf{z}$$

EQUALIZATION: ZF

• Zero-forcing equalization: example

- During the training stage, a impulse is transmitted, and the received distorted samples are $\{y(k)\} = [0.0, 0.2, 0.9, -0.3, 0.1]$
 - Find the zero-forcing equalization coefficients $[c_{-1}, c_0, c_1]$
 - Find the output of the equalizer when the distorted samples are at the input.



EQUALIZATION: MMSE

- Minimum mean square error (MMSE) equalizer
 - Minimize the mean square error (variance of error)
 - Training sequence $s_n = \delta(n)$
 - MMSE:
 - Error: $\mathbf{e} = \mathbf{Y}\mathbf{c} \mathbf{z}$
 - MSE: $\mathcal{E} = E[\mathbf{e}^H \mathbf{e}] = E[(\mathbf{Y}\mathbf{c} \mathbf{z})^H (\mathbf{Y}\mathbf{c} \mathbf{z})]$
 - MMSE: Selecting \mathbf{c} such that the MSE, \mathcal{E} , is minimized

• Solution:
$$\frac{\partial \varepsilon}{\partial \mathbf{c}} = 0$$

$$\mathbf{c} = \mathbf{R}_{yy}^{-1}\mathbf{R}_{yz}$$

