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BASEBAND SYSTEM 

• Formatting 

– The process of transforming source information into logical digital 

symbols (0s and 1s). 

• formatting textual information 

– Character encoding 

• Formatting analog information 

– Sampling, quantization, pulse code modulation (PCM) 

– The output of formatting are logic 0s and 1s. 

• Baseband Signaling 

– The process of transforming logic 0s and 1s into baseband electric 

waveforms that are compatible to the transmission media (channel). 

– Baseband signal: the signal whose spectrum extends from (or near) DC up 

to some finite value, usually less than a few MHz. 

• Baseband system 

– The communication system with baseband signal directly transmitted in 

the channel (e.g. Ethernet). 
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BASEBAND SYSTEM 
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FORMATTING: TEXTUAL DATA 

• Character encoding 

– The process of transforming text data into binary digits (bits). 

– Examples: 

• ASCII (7-bits, Table 2.3 of Sklar’s book). 

• Message, bits, and symbols 

– Message: the original textual message. (‘T’) 

– Bit: the encoded binary bits (e.g. 001010) 

– Symbols: a combination of k bits can form               symbols 

• M-ary system 

kM 2
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FORMATTING: ANALOG INFORMATION 

• Formatting analog information 

– Transforming analog waveform into bits  

• analog to digital conversion (ADC) 

• Some information will be lost during this process. 

– Sampling, quantization, PCM 

• Sampling 

– The process of taking samples of the analog waveform in the time domain. 

• Impulse sampling (ideal) 

• Natural sampling 

• Sample-and-hold 
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FORMATTING: SAMPLING 

• Impulse sampling 

– Multiplication of the analog signal with a periodic train of unit impulse 
function. 

– Time domain: 
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FORMATTING: SAMPLING 

• Impulse sampling: frequency domain 

– Fourier transform of the impulse train 

• impulse train is periodic 
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FORMATTING: SAMPLING 

• Impulse sampling 

– Sampling in time domain  Repetition in frequency domain 

• Sampling theorem 

– If the sampling rate is twice of the bandwidth, then the original signal can 

be perfectly reconstructed from the samples. 
Bs ff 2

Bs ff 2

Bs ff 2

Bs ff 2 aliasing 

Nyquist rate 

oversampling 
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FORMATTING: SAMPLING 

• Natural sampling 

– Multiplication of analog signal with a periodic train of rectangular pulses. 

• More practical than impulse sampling 

• Equivalent to using a switch.  
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FORMATTING: SAMPLING 

• Sample-and-Hold (flattop sample) 

– The simplest and most popular sampling method 

– Can be described by the convolution of impulse sampled signal with a 

unity amplitude rectangular pulse of pulse width  
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FORMATTING: SAMPLING 

• Engineering consideration of sampling 

– To avoid aliasing, a prefilter can be used to limit the bandwidth of signal. 

– Realizable filters usually have a transition between the passband and stop 
band: transitional bandwidth 

• Tansitional bandwidth is usually 10-20% of the signal bandwidth 

– Engineer’s version of Nyquist sampling rate: 

ms ff 2.2

• Example: music bandwidth: 20 kHz, the engineer’s Nyquist rate is 44 
ksamples/sec. The actual sampling rate used in CD: 44.1 ksamples/sec. 

– Oversampling: 

• Self-study Section 2.4.3 of Sklar’s book. 

– Signal interface for a digital system 

• Self-study Section 2.4.4 of Sklar’s book. 
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FORMATTING: QUANTIZATION 

• Quantization 

– Why quantization? 

• The output of sampler can still have infinite number of values. 

– Quantization is the process to limit the samples to finite values 

• E.g. 3-bit quantization  8 possible values. 

• Quantized samples  

• Some information will lost during quantization  quantization noise. 

– Types of quantization: 

• Uniform quantization 

• Non-uniform quantization (used to accommodate the properties of 

human speech). 
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FORMATTING: QUANTIZATION 

• Uniform quantization 

– The range of interest is divided into L levels. 

• Quantile interval: step size between two adjacent levels. 

• uniform quantization: quantile intervals are the same throughout. 

• Each level is quantized into                   bits   Ll 2log
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FORMATTING: QUANTIZATION 

• Quantization noise: relationship with SNR 

– An analog signal with peak-to-peak voltage range         is uniformly 

quantized into L levels  Quantile interval q = : 

– Quantization noise: the difference between actual value and quantized 

value 

• The maximum value of e: 

• The minimum value of e: 
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FORMATTING: QUANTIZATION 

• Quantization noise: relationship with  

– The magnitude of the quantization distortion error can be specified as a 

fraction p of the peak-to-peak analog voltage  
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FORMATTING: PCM 

• Pulse code modulation (PCM) 

– 1. Sampling 

• E.g. music: 44.1ksamples/sec 

– 2. Quantization and encoding 

• E.g. 8 levels  encoded into 3 bits/sample 

– Data rate:  

 

 

– More quantization levels  higher data rate 

– More quantization levels  higher quantization SNR  better quality 
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FORMATTING: QUANTIZATION 

• Non-uniform quantization 

– The statistical property of speech signal 

• 50% of the time, the amplitude is less than ¼ of the rms (root mean 

square) value. 

• Only 15% of the time does the voltage exceed the rms value.  

– Small quantile levels for small value, large quantile levels for large value 

• Non-uniform quantization 

P(X > x)=1- F(x) 

uniform quantization nonuniform quantization 



20 

FORMATTING: QUANTIZATION 

• Non-uniform quantization 

– 1. distort the original signal: 

• Steeper slope for small magnitude signal  a smaller change in low 

magnitude signal results in more steps. 

– 2. the distorted signal is passed through a uniform quantizer. 

–       - law distortion (North America):  
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BASEBAND TRANSMISSION 

• Why baseband modulation  

– After formatting, messages are converted to logic ‘0’s and ‘1’s. 

– Baseband modulation: converting logic ‘0’s and ‘1’s to baseband electric 
signals that are compatible with baseband channel (pulse modulation) 

– PCM waveform: when pulse modulation is applied to a binary symbol, the 
resulting binary waveform is called a PCM waveform 

– M-ary pulse-modulation waveform: when pulse modulation is applied to a 
nonbinary symbol.  
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BASEBAND TRANSMISSION: PCM 

• PCM waveforms (line codes) 
– Nonreturn-to-zero (NRZ) 

• NRZ-L (level) (digital logics) 

• NRZ-M (mark, ‘1’) (magnetic tape) 

• NRZ-S (space, ‘0’) 

– Return-to-zero (RZ) (baseband Tx) 

• Unipolar RZ  

• Bipolar RZ 

• RZ-AMI (alternate mark inversion) 

– Phase encoded 

•                   (manchester encoding) 

 (Ethernet) 

•                    (mark, ‘1’) 

•                    (space, ‘0’) 

• DM (delay modulation, miller coding) 

– Multilevel binary  

• Dicode NRZ 

• Dicode RZ 

• Bipolar RZ 

• RZ-AMI 

 

Differential 

encoding 

Lbi 

Sbi 
Mbi 



24 

BASEBAND TRANSMISSION: PCM 

• Why so many PCM waveforms?  

– Self-clocking:  

• Manchester code has a transition in middle for synchronization. 

– Bandwidth 

• Less transitions  less bandwidth 

– Noise immunity 

• NRZ waveforms have better error performance than unipolar RZ. 

– DC components (mean) 

• Unipolar RZ has DC components, while bipolar RZ doesn’t 
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BASEBAND: M-ARY PULSE MODULATION 

• M-ary pulse modulation 

– The analog signal are sampled, quantized to M-

ary symbols, and then modulated on to pulses. 

– Classification 

• Pulse amplitude modulation (PAM) 

– Use the amplitude of the pulse to carry 

information. 

– M = 2  PCM (special case of PAM 

when M = 2) 

• Pulse position modulation (PPM) 

– Using the start position of a pulse to 

carry information 

• Pulse duration modulation (PDM), pulse 

width modulation (PWM) 

– Using the width of a pulse to carry 

information. 

PPM 

PWM 
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BASEBAND: M-ARY PULSE MODULATION 

• Why multilevel? 

–                levels: each level (symbol) can represent k bits of information.   

– If the data rate is R bit/sec, then the symbol rate is R/k symbols/sec. 

– Pros:  

• The transitions of signals becomes slower  bandwidth becomes 
smaller 

• Signal bandwidth is proportional to symbol rate. 

• Bandwidth efficiency: symbol rate/bandwidth 

– Cons:  

• The receiver needs to distinguish between M different symbols 
instead of 2 symbols in binary modulation 

• Signals are more sensitive to noise.  

kM 2

Tradeoff between bandwidth and performance. 
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BASEBAND: M-ARY PULSE MODULATION 

• Example 

– An analog information with maximum frequency                  , is to be transmitted over an 

M-ary PAM system, where the number of pulse levels is M = 16. The quantization 

distortion is specified not to exceed 1% of the peak-to-peak analog signal. 

• How many quantization levels are required? 

• What is the minimum sampling rate? 

• What is the bit rate? 

• What is the symbol rate? 

• If the actual transmission bandwidth is 12 kHz, determine the bandwidth efficiency.  

kHzfm 3
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BASEBAND: CORRELATIVE CODING 

• Baseband signaling can be represented by passing data through a 

filter 
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– Eg. 1. Rectangular waveform:  

• Bipolar PCM (unlimited bandwidth) 

• 0-to-null BW: 

– Eg. 2. Ideal low pass filter: 

• 0-to-null BW:  

• Ideal filter is unrealizable  
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BASEBAND: CORRELATIVE CODING 

• Correlative coding  

– also referred to as: duobinary signaling, partial response signaling. 

– It can use a baseband bandwidth of W Hz to support a symbol rate of 2W 

symbols/sec without resorting to unrealizable ideal filter. 
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BASEBAND: CORRELATIVE CODING 

• Correlative encoding and decoding 

– Encoder: 

• 1. Differential encoding of binary sequence  1 kkk wxw

– Modular 2 operation: 

 

 

– Differential encoding is performed over 0’s and 1’s: it will not affect 

signal bandwidth. 

 

 

• 2. Mapping binary sequence to bipolar sequence 

 

000  101  011 110 

• 3. Duobinary encoding 

 

1 kkk wwy

– Decoder: 

 • 1. Decision rule: 

– If                  or             , 

– If               ,  

 

1ˆ ky 1ˆ ky 0ˆ kx

1|ˆ| ky 1ˆ kx
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BASEBAND: CORRELATIVE CODING 

• Frequency domain analysis 

)()()( Ttwtwty 

– Frequency domain:  

– Time domain of duobinary coding:  

– Transfer function of duobinary coding:  

– Transfer function of ideal rect filter:  

fTjefWfWfY 2)()()( 

)()()( 21 fHfHfHe 

fTje
fW

fY
fH 2

1 1
)(

)(
)( 

Differential 

coding 

Duobinary 

Coding 

Bipolar 

Mapping 
Ideal 

Rect Filter 

– Overall response of the encoder: 

 Even though           is an ideal filter and cannot be 
implemented,             can be easily approximated. In 
reality, duobinary coding and ideal rect filter are 
approximated by ONE filter.    
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BASEBAND: CORRELATIVE CODING 

• Duobinary Coding v.s. PCM 

– Bandwidth for transmission data rate of 1/T bps: 

• binary PAM: 0-to-null is 1/T Hz, absolute bandwidth is infinity 

• Duobinary: absolute bandwidth: 1/(2T) 

– Performance: 

• Binary PAM: two levels 

• Duobinary: three levels (worse performance compared to binary 

PAM) 

 

– Tradeoff between bandwidth and performance. 


