Department of Electrical Engineering University of Arkansas

ELEG5663 Communication Theory Ch. 2 Formatting and Baseband Signaling

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Baseband system
- Formatting
- Baseband modulation
- Correlative coding

BASEBAND SYSTEM

• Formatting

- The process of transforming source information into logical digital symbols (0s and 1s).
 - formatting textual information
 - Character encoding
 - Formatting analog information
 - Sampling, quantization, pulse code modulation (PCM)
- The output of formatting are logic 0s and 1s.

Baseband Signaling

- The process of transforming logic 0s and 1s into baseband electric waveforms that are compatible to the transmission media (channel).
- Baseband signal: the signal whose spectrum extends from (or near) DC up to some finite value, usually less than a few MHz.

• Baseband system

- The communication system with baseband signal directly transmitted in the channel (e.g. Ethernet).

BASEBAND SYSTEM

OUTLINE

Baseband system

• Formatting

- Formatting textual messages
- Formatting analog information
- Baseband modulation
- Correlative coding

FORMATTING: TEXTUAL DATA

Character encoding

- The process of transforming text data into binary digits (bits).
- Examples:
 - ASCII (7-bits, Table 2.3 of Sklar's book).
- Message, bits, and symbols
 - Message: the original textual message. ('T')
 - Bit: the encoded binary bits (e.g. 001010)
 - Symbols: a combination of k bits can form $M = 2^k$ symbols
 - M-ary system

Character coding			ŀ	<u> H </u>				KCharacter and in a		T	H		I N		K		
(6-bit ASCII):	001	010	000	100	100	100	011	100	110	100	(6-bit ASCII):	00101	00001	00100	1000	11100	110100
8-ary digits (symbols):	↓ 1	↓ 2	↓ 0	↓ 4	↓ 4	↓ 4	↓ 3	↓ 4	↓ 6	↓ 4	32-ary digits (symbols):	↓ 5	↓ 1	↓ 4	↓ 17	↓ 25	¥ 20
8-ary waveforms:	s ₁ (t)	$s_2(t)$	$s_0(t)$	$s_4(t)$	$s_4(t)$	$s_4(t)$	$s_3(t)$	$s_4(t)$	$s_6(t)$	$s_4(t)$	32-ary waveforms:	$s_5(t)$	$s_1(t)$	$s_4(t)$	s ₁₇ (t)	$s_{25}(t)$	$s_{20}(t)$

FORMATTING: ANALOG INFORMATION

• Formatting analog information

- Transforming analog waveform into bits
 - analog to digital conversion (ADC)
 - Some information will be lost during this process.
- Sampling, quantization, PCM

Sampling

- The process of taking samples of the analog waveform in the time domain.
 - Impulse sampling (ideal)
 - Natural sampling
 - Sample-and-hold

• Impulse sampling

- Multiplication of the analog signal with a periodic train of unit impulse function.
- Time domain:

Impulse sampling: frequency domain ٠

- Fourier transform of the impulse train
 - impulse train is periodic

Fourier series

$$p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} 1 \times e^{j\frac{2n\pi}{T_s}t}$$

• Find Fourier transform on both sides

$$P(f) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} \delta(f - nf_s)$$

• Time domain multiplication \rightarrow Frequency domain convolution

$$x(t)p(t) \Leftrightarrow [X(f) \otimes P(f)]$$

$$x(t)p(t) \Leftrightarrow \frac{1}{T} \sum_{n=-\infty}^{+\infty} X(f - nf_s)$$

• Impulse sampling

- Sampling in time domain \rightarrow Repetition in frequency domain

Sampling theorem

- If the sampling rate is twice of the bandwidth, then the original signal can be perfectly reconstructed from the samples. $f_s > 2f_B$

• Natural sampling

- Multiplication of analog signal with a periodic train of rectangular pulses.
 - More practical than impulse sampling
 - Equivalent to using a switch.

• Sample-and-Hold (flattop sample)

- The simplest and most popular sampling method
- Can be described by the convolution of impulse sampled signal with a unity amplitude rectangular pulse of pulse width T_s

$$x_{s}(t) = rect\left(\frac{t}{T_{s}}\right) \otimes \left[\sum_{n=-\infty}^{+\infty} x(nT_{s})\delta(t-nT_{s})\right]$$

$$X_s(f) =$$

– The spectrum is similar to that of natural sampling

• Engineering consideration of sampling

- To avoid aliasing, a prefilter can be used to limit the bandwidth of signal.
- Realizable filters usually have a transition between the passband and stop band: transitional bandwidth
 - Tansitional bandwidth is usually 10-20% of the signal bandwidth
- Engineer's version of Nyquist sampling rate:

 $f_s \ge 2.2 f_m$

- Example: music bandwidth: 20 kHz, the engineer's Nyquist rate is 44 ksamples/sec. The actual sampling rate used in CD: 44.1 ksamples/sec.
- Oversampling:
 - Self-study Section 2.4.3 of Sklar's book.
- Signal interface for a digital system
 - Self-study Section 2.4.4 of Sklar's book.

Quantization

- Why quantization?
 - The output of sampler can still have infinite number of values.
- Quantization is the process to limit the samples to finite values
 - E.g. 3-bit quantization \rightarrow 8 possible values.
 - Quantized samples
 - Some information will lost during quantization \rightarrow quantization noise.
- Types of quantization:
 - Uniform quantization
 - Non-uniform quantization (used to accommodate the properties of human speech).

• Uniform quantization

- The range of interest is divided into *L* levels.
 - Quantile interval: step size between two adjacent levels.
 - uniform quantization: quantile intervals are the same throughout.
 - Each level is quantized into $l = \log_2 L$ bits

• Quantization noise: relationship with SNR

- An analog signal with peak-to-peak voltage range V_{pp} is uniformly quantized into *L* levels \rightarrow Quantile interval q = :
- Quantization noise: the difference between actual value and quantized value $e = x(t) x_Q(t)$
 - The maximum value of *e*:
 - The minimum value of *e*:
 - *e* is uniformly distributed in [-q/2, q/2]
- pdf of quantization noise:
- Quantization noise variance (noise power):
- Signal power:
- Signal-to-noise ratio (SNR):

$$SNR = \frac{L^2 q^2 / 4}{q^2 / 12} = 3L^2$$

- Quantization noise: relationship with V_{pp}
 - The magnitude of the quantization distortion error can be specified as a fraction p of the peak-to-peak analog voltage V_{pp}

 $|e| \le pV_{pp}$

– The relationship between maximum quantization error and V_{pp}

– The relationship between quantization level *L* and *p*:

$$L \ge \frac{1}{2p}$$

FORMATTING: PCM

- Pulse code modulation (PCM)
 - 1. Sampling
 - E.g. music: 44.1ksamples/sec
 - 2. Quantization and encoding
 - E.g. 8 levels \rightarrow encoded into 3 bits/sample
 - Data rate:

- More quantization levels \rightarrow higher data rate
- More quantization levels \rightarrow higher quantization SNR \rightarrow better quality

• Non-uniform quantization

- The statistical property of speech signal
 - 50% of the time, the amplitude is less than ¹/₄ of the rms (root mean square) value.
 - Only 15% of the time does the voltage exceed the rms value.
- Small quantile levels for small value, large quantile levels for large value
 - Non-uniform quantization

Non-uniform quantization

- 1. distort the original signal:
 - Steeper slope for small magnitude signal → a smaller change in low magnitude signal results in more steps.
- 2. the distorted signal is passed through a uniform quantizer.

-
$$\mu$$
 - law distortion (North America):

$$y = y_{\max} \frac{\log_e \left[1 + \mu(|x| / x_{\max})\right]}{\log_e (1 + \mu)} \operatorname{sgn} x$$

- A-law ditortion (Europe)

$$y = \begin{cases} y_{\max} \frac{A(|x|/x_{\max})}{1 + \log_e A} \operatorname{sgn} x & 0 < \frac{|x|}{x_{\max}} \le \frac{1}{A} \\ y_{\max} \frac{1 + \log_e (A|x|/x_{\max})}{1 + \log_e A} \operatorname{sgn} x & \frac{1}{A} < \frac{|x|}{x_{\max}} < \frac{1}{A} \end{cases}$$

OUTLINE

- Baseband system
- Formatting
- Baseband transmission
- Correlative coding

BASEBAND TRANSMISSION

Why baseband modulation

- After formatting, messages are converted to logic '0's and '1's.
- Baseband modulation: converting logic '0's and '1's to baseband electric signals that are compatible with baseband channel (pulse modulation)
- PCM waveform: when pulse modulation is applied to a binary symbol, the resulting binary waveform is called a PCM waveform
- M-ary pulse-modulation waveform: when pulse modulation is applied to a nonbinary symbol.

BASEBAND TRANSMISSION: PCM

NIVERSITY OF

BASEBAND TRANSMISSION: PCM

• Why so many PCM waveforms?

- Self-clocking:
 - Manchester code has a transition in middle for synchronization.
- Bandwidth
 - Less transitions \rightarrow less bandwidth
- Noise immunity
 - NRZ waveforms have better error performance than unipolar RZ.
- DC components (mean)
 - Unipolar RZ has DC components, while bipolar RZ doesn't

BASEBAND: M-ARY PULSE MODULATION

• M-ary pulse modulation

- The analog signal are sampled, quantized to *M*-ary symbols, and then modulated on to pulses.
- Classification
 - Pulse amplitude modulation (PAM)
 - Use the amplitude of the pulse to carry information.
 - $M = 2 \rightarrow PCM$ (special case of PAM when M = 2)
 - Pulse position modulation (PPM)
 - Using the start position of a pulse to carry information
 - Pulse duration modulation (PDM), pulse width modulation (PWM)
 - Using the width of a pulse to carry information.

BASEBAND: M-ARY PULSE MODULATION

• Why multilevel?

- $M = 2^k$ levels: each level (symbol) can represent k bits of information.
- If the data rate is R bit/sec, then the symbol rate is R/k symbols/sec.
- Pros:
 - The transitions of signals becomes slower → bandwidth becomes smaller
 - Signal bandwidth is proportional to symbol rate.
 - Bandwidth efficiency: symbol rate/bandwidth
- Cons:
 - The receiver needs to distinguish between M different symbols instead of 2 symbols in binary modulation
 - Signals are more sensitive to noise.

Tradeoff between bandwidth and performance.

BASEBAND: M-ARY PULSE MODULATION

• Example

- An analog information with maximum frequency $f_m = 3kHz$, is to be transmitted over an M-ary PAM system, where the number of pulse levels is M = 16. The quantization distortion is specified not to exceed 1% of the peak-to-peak analog signal.
 - How many quantization levels are required?
 - What is the minimum sampling rate?
 - What is the bit rate?
 - What is the symbol rate?
 - If the actual transmission bandwidth is 12 kHz, determine the bandwidth efficiency.

OUTLINE

- Baseband system
- Formatting
- Baseband transmission
- Correlative coding

• Baseband signaling can be represented by passing data through a filter $x_n \in \{-1,1\}$ p(t) x(t)

- Eg. 1. Rectangular waveform:
$$p(t) = u(t) - u(t - T_s) = rect\left(\frac{t - T_s/2}{T_s}\right)$$

 $x(t) = \sum_{n} x_n p(t - nT_s)$

- Bipolar PCM (unlimited bandwidth)
- 0-to-null BW:
- Eg. 2. Ideal low pass filter: $p(t) = \sin c \left(\frac{t}{T_s}\right)$ $P(f) = T_s rect \left(\frac{f}{F_s}\right)$
 - 0-to-null BW:
 - Ideal filter is unrealizable

• Correlative coding

- also referred to as: duobinary signaling, partial response signaling.
- It can use a baseband bandwidth of W Hz to support a symbol rate of 2W symbols/sec without resorting to unrealizable ideal filter.

• Correlative encoding and decoding

- Encoder:
 - 1. Differential encoding of binary sequence
 - Modular 2 operation:

$$w_k = x_k \oplus w_{k-1}$$

 $0 \oplus 0 = 0 \qquad 0 \oplus 1 = 1 \qquad 1 \oplus 0 = 1 \qquad 1 \oplus 1 = 0$

Binary digit sequence $\{x_k\}$:	0	0	1	0	1	1	0
Precoded sequence $w_k = x_k \bigoplus w_{k-1}$:	0	0	1	1	0	1	1

- Differential encoding is performed over 0's and 1's: it will not affect signal bandwidth.
- 2. Mapping binary sequence to bipolar sequence

Bip	oolar sequence $\{w_k\}$:	-1	-1	+1	+1	-1	+1	+1
• 3.	Duobinary encoding				y	$v_k = v$	$w_k + v$	\mathcal{N}_{k-1}
Co	ding rule: $y_k = w_k + w_{k-1}$:		-2	0	+2	0	0	+2

- Decoder:
 - 1. Decision rule:

- If
$$\hat{y}_k < -1$$
 or $\hat{y}_k > 1$, $\hat{x}_k = 0$
- If $|\hat{y}_k| < 1$, $\hat{x}_k = 1$

- Time domain of duobinary coding:
- Frequency domain:
- Transfer function of duobinary coding:
- Transfer function of ideal rect filter:
- Overall response of the encoder:

Even though $H_2(f)$ is an ideal filter and cannot be implemented, $H_e(f)$ can be easily approximated. In reality, duobinary coding and ideal rect filter are approximated by **ONE** filter.

y(t) = w(t) + w(t - T)

 $Y(f) = W(f) + W(f)e^{-j2\pi f T}$

$$\begin{split} H_1(f) = & \frac{Y(f)}{W(f)} = 1 + e^{-j2\pi f T} \\ H_2(f) = T, \ |f| < & \frac{1}{2T} \end{split}$$

 $H_e(f) = T(1 + e^{-j2\pi fT}), |f| < \frac{1}{2T}$

• Duobinary Coding v.s. PCM

- Bandwidth for transmission data rate of 1/T bps:
 - binary PAM: 0-to-null is 1/T Hz, absolute bandwidth is infinity
 - Duobinary: absolute bandwidth: 1/(2T)
- Performance:
 - Binary PAM: two levels
 - Duobinary: three levels (worse performance compared to binary PAM)
- Tradeoff between bandwidth and performance.

