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OUTLINE

« Deterministic signals (Ch. 1.2, 1.3, 1.6 Appendix A)

« Random Signals

 Signal transmission through linear system, bandwidth



DETERMINISTIC: SIGNAL CLASSIFICATION

« Deterministic v.s. Random
— Deterministic signal: there is no uncertainty.w.r.t. signal value at any time.
 E.g. x(t)=5exp(-2t)cos(St)
— Random signal: there is some degree of uncertainty before the signal occurs.
» E.g. noise
« Periodic v.s. Nonperiodic
— Assignal is called periodic in time if there exists a constant T, >0 such that
X(t) = x(t+T,)
— The smallest T,>0 satisfying the above equation is called fundamental period.
e E.g. find the fundamental period of  x(t) =exp(—jat)

« Continuous-time v.s. Discrete-time signal
— Continuous-time signal: the signal is defined over continuous-time.  x(t)
— Discrete-time signal: a signal that exists only at discrete-time values. x(kT,), x(k)
— Discrete-time signals are undefined at  t # KT,



DETERMINISTIC: SIGNAL

* Energy signal v.s. Power signal
— Instantaneous power of a signal  p(t) = X*(t)
TT

— Energy of a signal dissipated during interval (_E’Ej
E" =[x ()t

T/

TT
— Average power dissipated during interval (_ P ’EJ

.
PT = E? - % _TT//Zz x* (t)dt

— Total Energy of signal: . _ . 2 dt= [ @t

T—00d-T/2 —

» Energy signal: O<E<o
— Average power of signal:
gep J P Tlim% _TT//ZZXZ(t)dt

« Average power of periodic sigip =if°’2 X2 (t)dt =if° X2 (t)dt
T, +-To/2 T, %0

» Power signal: 0<P<oo
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DETERMINISTIC: SIGNAL

« Example:
X(t) = Acos(w,t + 6,)

— Find the fundamental period.
— Find the average power.



DETERMINISTIC: SIGNAL

« Unit step function

1 t>0
u(t) =
(t) {O, t<O0

« Rectangular function

a a
rect(ij: 1 _EStSE

a 0 O.W.

— rect(t) can be represented by using u(t):

v
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v



DETERMINISTIC: SIGNAL

 Unit impulse function (Dirac delta function) 5()

0(0) = I
S(t)=0,t=0 1

[Tomydt=1

— delta function can be vie\llved as the limit of the rect function Q
o(t) =lim —rect(t/e) 1/ &

&—0

— Sampling property
x(t)o(t _to) = X(to)5(t _to)

>

~— Vv

— Shifting property £
[ xSt —t,)dt = x(t,)

— Integration of S (t)
[ 8(r)dr =



DETERMINISTIC: SYSTEM

* Linear system
— A system is linear if the superposition principal is satisfied.

X, (t)

A

System

Y, (t)

[

ax (t) + 5%, (1)

»

X, (1)

y

Y, (t)

« Time-invariant system

— Assystem is time-invariant if a time shift in the input signal causes an
identical time shift in the output signal

X(t)

Time-invariant

System

y(t)

System

System

ay, (t) + ﬁyi (t)

v

X(t—t,)

Time-invariant

v

y(t _to)

« Linear time-invariant (LTI) system
— Asystem is both linear and time-invariant.

System

v



DETERMINISTIC: SYSTEM

* Impulse response of LTI system

— Def: the output (response) of a system when the input is a unit impulse
function (delta function). Usually denoted as h(t)

x(t) = 5(t)

LTI

y(®) = h(t)

« Response of LTI system to arbitrary input

X(t)

« Convolution

A 4

System

y(t) = x(@h(t-z)dr

y() =x®) ®h(t) = [ x(x)h(t—z)dr
— Example: evaluate the convolution X()®o(t—t,)



DETERMINISTIC: SYSTEM

10

« Example
— A system has impulse response h(t) =exp(=at)u(t) . If the input is
x(t) =exp(-bt)u(t), find the output.



DETERMINISTIC: FOURIER ANALYSIS
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 Fourier transform

X(f)=[x(t)e *"dt
— Frequency domain representation of signal.
« Inverse Fourier transform
X(t) = f""x (f)eizdf

x(t)

« Example:
— Find the Fourier transform of X(t) =rect(t/7) |

—7
7

. WT

X(w) =7 3inc —

2

X(f)=zsinc(fr)
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DETERMINISTIC: FOURIER ANALYSIS
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« Selected properties

— Linearity
o |f X, (t) < X, (f) X, (t) < X,(f)
« Then ax (t)+bx,(t) < aX,(f)+bX,(f)
— Time shift

. If X(t) < X(f)
- Then  X(t—t;) = X(f)exp[—j2xft,]

— Duality
i g(t) < G(f)

e Then G(t)C:’g(_f)

— Convolution
. If X(t) < X(f) h(t) < H(f)

« Then X(t) ®h(t) < X(f)H(f)

x(t) X(t) ® h(t) X(f)
h(t) , S H(f)

X(f)H(T)

|




DETERMINISTIC: FOURIER ANALYSIS
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« Examples
— Find the Fourier transform of X(t) =5 (t)

— Find the Fourier transform of X(t)=o(t-t,)

— Find the Fourier transform of x(t) =e 7™

— Find the Fourier transform of ~ x(t) = Acos(27ft)



DETERMINISTIC: FOURIER ANALYSIS
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 Fourier series

— For any periodic signal with fundamental period T, it can be decomposed
as the sum of a set of complex exponential signals as

x(t)=>c, exp{jh%t}
- Fourier series coefficients: ¢ ,n=0,+1,%2,.--
1 .~ N
C, :?be(t)exp[— 127Z'?'[:|d'[
— Fourier transform of periodic signal (perform Fourier transform on both
sides of Fourier series) too n
X(f)= D c,o(f —;)

e Parsaval’s theorem

— Energy signal: E=I_+:X2(t)dt=f:xz(f)df
— Power signal: 1 Tz, -
P=Ilim= x?(t)dt = > c:

T—)ooT -T/2

N=—o0



DETERMINISTIC: ENERGY SPECTRAL DENSITY
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* Energy spectral density (ESD)
— The distribution of the signal’s energy in frequency domain.
» The “density” of energy. Unit: Joul/Hz

— E.g. 1: If the ESD of signal x(t) is W, (f) , then the energy in frequency
range (f,f +Af) is:

— E.g. 2: the energy in frequency range (f,, f,) is:
— Def: If x(t) < X(f), then the ESD of energy signal is

)= X(f)|
oy BDAXD)



DETERMINISTIC: POWER SPECTRAL DENSITY
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« Power spectral density (PSD)
— The distribution of signals power in frequency domain
» The density of power (unit: watt/Hz)
— PSD of power signal is the
()= Yle, P o(F —nfy)

N=—0o0

« C,: Fourier coefficient
. f,=1/T,
— E.g. Find the PSD and power of X(t) = Acos(2xf,t)



OUTLINE
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« Random Signals (Ch. 1.5)



RANDOM SIGNAL

18

« Random variable (RV):

— Random variable: X(A) represents the functional relationship between a
random event A and a number X.

— Example:
« Random event A: toss coin;

« Mapping between coin toss and number:
— coin head = X =0; coin tail = X =1.

« Discrete RV, probability mass function (PMF)
— Example:

« Anurn has 2 black balls, 5 white balls, and 3 red balls, pick one ball
out of urn

— Random event A: black ball, white ball, red ball
 RV: X: black ball = X = 0; white ball = X =1: red ball = X = 2.

CPMEL b gy
P(X =1) =
P(X =2) =



RANDOM SIGNAL
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e Cumulative Distribution Function (CDF)
— The CDF of a random variable X is given by

F (X)=P(X <

RV The variable of the function

» The probability that the RV X is less than or equal to a real number x.

— Some properties:

Fy (-0)=0 Fy (+00) =1 0<F, (x)<1
P(x, < X <X,) =F (%) = Fx (%) X <X, = F, (x)<F (X,)
— Example:

« The CDF of the RV in the previous example

Discrete RV can be characterized by PMF, CDF




RANDOM SIGNAL

20

« Probability Density Function (pdf)
dF, (x
Px (X) = %

— The “density” of probability.

« E.g. the probability that the RV X e[X,X+AX] :

« The probability that the RV~ X €[X,, X, ]:

— Properties of pdf
Px (X)>0 [ pe (xdx =1



RANDOM SIGNAL

« Continuous RV
— The RV can take continuous values.

— Continuous RV can be characterized by its pdf or CDF.

« Uniform distribution
— pdf
px(x)zi,agxgb
b—a
— The RV X has equal probability to be

any value in the range of [a,Db]

2

150

1

0.5F




RANDOM SIGNAL
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« Mean (Ensemble Average, 15t moment, expected value)
— The mean value of a random variable is defined by

my =E(X) = xp, (x)dx my, =E(X) =) xP(X=x)

— Example:
« The exponential distribution has pdf

P, (X) = Aexp(—Ax),x=>0,1>0

— Find its mean value.



RANDOM SIGNAL
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* The n-th moment of a RV is defined as
E(X") =] x"py (x)olx
« The n-th central moment of a RV is defined as
E[(X —me)"]= [ (x=m,)" py (x)dx

« Variance (average power of a zero-mean random signal)
— Second central moment. oy = E[(X — mx)z]: E[X 2]— m;
— Standard deviation (root mean square value, rms): &,



RANDOM SIGNAL

24

Gaussian distribution (Normal distribution)
— Arandom variable is Gaussian distributed if the pd

Py (X) = = exp{—ﬂ}
27

2
o 20

— Gaussian pdf is fully characterized by its mean
m and variance o?

— Y = aX+b is still Gaussian

— Example: prove the mean of Gaussian RV
iIsm

DN9522851A7

- —_— [} —_— —_— —_— —_— —_— —_—

~

mean X ~ N(m,c?)

ZEHN DEUTSCHE MARK



RANDOM SIGNAL: JOINT DISTRIBUTION

« Joint distribution
— Two RVs X, Y, the joint CDF is defined as

Foy (X Y)=P(X XY <Yy)

— Example
X Y Prob.
0 0 0.2
0 1 0.2
1 0 0.5
1 1 0.1
joint PMF: P(X =0&Y =0)=

marginal PMF. P(X =0)=

marginal PMF:  P(Y =1) =

conditional PMF: P(X =0]Y =1) =

(if we already know that Y = 1, what is the probability that X = 0?)

UNIVERSITY O]

3 ARKANS



RANDOM SIGNAL: JOINT DISTRIBUTION
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* Independent RVs
- KX y)=F,(¥F,(y) €= XandY are independent.
— Independence: there is no relationship between the two RVs.

« Joint pdf

0°F,, (X,
Px v (X’ Y) — g:(éy y)
« Marginal pdf
Px (X) = f: Py (X, y)dy Py (Y) = J.j: Pxy (X, y)dx

~ Py (X Y)=px ()P (Y) €9 XandY are independent
« Conditional pdf

Py (X,Y) Bure (¥ %) = 2 (X, y)
Py () Px (X)

Pxy (X]Y) =



RANDOM SIGNAL: JOINT DISTRIBUTION
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« Example
— Find the marginal pdf and conditional pdf of

Pyy (X, y)=€77,x20,y>0

— Are they independent?



RANDOM SIGNAL: JOINT DISTRIBUTION
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e Correlation and covariance
— The correlation between two RVs X and Y:

corr(X,Y)=E[XY ]= [ [ xypyy (x, y)dxdy
— The covariance between two RVs X and Y:
cov(X,Y) =E[(X —=m, XY —m, )]= E[XY]-m,m,

 Uncorrelated
— Two RVs X, Y are uncorrelated if E[XY]z E[X]E[Y]
— If two RVs are uncorrelated, what is their covariance?

— If two RVs are independent, then they are uncorrelated. (Why?)
 But not the other way around!!!
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RANDOM SIGNAL: RANDOM PROCESS

« Random process

— A random process can be viewed as a RV changes w.r.t. time:
A function of two variables: X(A, t)

— Sample function: X, (t) = X (A1)
« Each sample function corresponds to one of the random events.
- For a specific event A , we have a single sample function X, (t) .
« The collection of all sample functions is called ensemble.

— Random variable: X(t )= X(At,)
« For a specific time t,_, we haveaRV X(t,)

« Random process is a collection of RVs. OO < N S

Real number, x




RANDOM SIGNAL: RANDOM PROCESS
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 Mean (ensemble average)
m, () = E[X (t)]
— The mean is a function of time!
« Autocorrelation function
Ry (t,,t,) = E[X (1) X (t,)]
— The correlation of two RVs.
— Autocorrelation function is a function of two variables U,
« Stationary (strict)

— Arandom process is stationary in the strict sense if none of its properties
Is affected by a shift in time.

« Wide-sense stationary (WSS)

— Arandom process is WSS if its mean and autocorrelation function do not
vary with a shift in the time.

« Mean is independent of time: m, (t,) =m,
- Autocorrelation depends only on time difference: R, (t,,t,) =R, (t,-t,)
=Ry (7)



RANDOM SIGNAL: RANDOM PROCESS
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« Example:

Consider a stationary sequence of independent binary bits. Each bit has
equal probability of being or -1 or 1. The bit period is T.

— Find the mean of the random process.
— Find the average power of the random process.



RANDOM SIGNAL: POWER SPECTRAL DENSITY
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« Power spectral density (PSD)

— The distribution of the signal’s power in the frequency domain.

* The “density” of power in the frequency domain (unit: watt/Hz).
— It allows the evaluation of signal power in a certain frequency range.

« The power in frequency range [f, f +Af]:
« The power in frequency range [f;, f,]:

— PSD of a WSS random process is the Fourier transform of its
autocorrelation function

Gy (1) =F[Ry (7)]



RANDOM SIGNAL: NOISE
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« Noise

— Unwanted electrical signals that are always present in electrical system.

« Man-made noise: spark-plug ignition noise, switching transients,
other radiating electromagnetic signal.
 Natural noise: thermal noise, elements of atmosphere, etc.

e Thermal noise:

— Caused by thermal motion of electrons in all electronic components:
resistors, diodes, transistors, wires, ...

— Become worse with the increase of temperature.
— Thermal noise is a random process X(A, t)
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RANDOM SIGNAL: NOISE

« Statistical properties of thermal noise
— Ataspecifictime t,, X(At,) iszero-mean Gaussian distributed
« Gaussian noise o= e [4(8) ]

el 3
oN2rx 2\ o
— Its power spectral density is the same for all frequencies.

« White noise N
. PSD Gy (f)==2 S

« Autocorrelation function: R, () =

Px (X) =

— Any two different noise samples are uncorrelated.

Gn(f) Rn(t)

No/2
No/2

F T

0

UNMIVERSITY OF

P ARKANSAS



OUTLINE
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 Signal transmission through linear system, bandwidth (Ch. 1.6,
1.7)
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TRANSMISSION
« LTI system
> LTI >

X(t) h(t) y(t)

X (f) H(f) Y (1)
« Frequency transfer function (frequency response)

_Y(f) _
H(f)= G Flh)]

— In general, H(f) is complex
H(F)={H(f)[e!"

» Magnitude response:
[H(f) = yRe*{H()}+1m*{H(f)}

 Phase response:

_ arctan MMH(F);
6(f)=arctan Re{H(f)}
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TRANSMISSION
« Random process passes through linear system
> LTI >
X (A1) h(t) Y (A1)
Gy (1) H(f) G, (f)

— If the input is a random process X(A, t), then the output is a random
process Y(A, t).
— Generally speaking, Y and X follow different distributions
« However, if X is Gaussian distributed, Y is still Gaussian!
— Linear combination of Gaussian is still Gaussian.

— The PSD of X and Y are related by the following equation
Gy (1) =G, (FH(F)’

« |If the input is white Gaussian random process, then the output is
colored Gaussian with PSD determined by H(f) = this can be used to

generate colored Gaussian random process.



TRANSMISSION: IDEAL TRANSMISSION
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 ldeal transmission (distortionless transmission)
— The output has some delay compared to the input
— The output has a different amplitude compared to input
— It must have the same shape as the input: no distortion.

y(t) = Kx(t—t,)
— Frequency domain system equation:
— Transfer function:

« Amplitude response:

« Phase response:



TRANSMISSION:

39

e ldeal filters

bandpass

« Example

IDEAL TRANSMISSION
|H ()|
1 |H ()|
E—— T s =L
u Ofr e i 0 f B
ke
Ba‘ndwiclth
We=fy
lowpass highpass

N i
— Pass a white noise with PSD Gy (f)=-_" through an ideal low pass filter

with bandwidth f,

the filter.

. Find the autocorrelation function at the output of



TRANSMISSION: RELIAZABLE TRANSMISSION
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« Example:
— RC filter

1
H(f)=—
1+ j24RC
0(f)
|H(P) | 4
C g engecarr sdbpleEEgoaseds i ] TR A
o—ww——Tﬂ"‘ 1 1 L 1
Input Cc T Output ﬂwower point i 1 imc
o lo) | 1 T2rRC _m| i
|1 0 W,_‘ 1 f 4 1
(a) T 2rRC = 2zqC —g RS S
) (b)
— Butterworth filter (0
1
H ( ,n>1

f)=
) J1+(F1£)%

|H()|

wouwonon
- w o g

f Figure 1.14 Butterworth filter
magnitude response.
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TRANSMISSION: BANDWIDTH

« Baseband v.s. Bandpass

— A baseband signal can be shifted to a higher frequency by multiplying it
with a carrier wave cos 2f t

X, (t) = x(t) cos 2af t
— In the frequency domain

X () =2 [X(F = )+ X(F+1)]

| X(f) | | X(F) 1
UsSB LSB LSB USB
x(t) —>®—+xc(t) = x(¢) cos 2nfet /——\ /—{_\ /_,:_—\
* ) ; ‘l f
el 2TCfct —Im 0 fm ; ~fe ~fm ~fe Fet+im 0 fe—Im fe fe+1m
(local oscillator) ' ks

Baseband Double-sideband
bandwidth bandwidth

DSB: Double side band, USB: upper side band, LSB: lower side band

Bandpass bandwidth is twice of baseband bandwidth.



TRANSMISSION: EANDWIDTH DILEMMA
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« Dilemma
— Strictly band limited signal imply infinite duration
x1(8) | X100 |
.//I\/\A t /I\ .
(a) (b)

— Duration limited signal has infinite bandwidth

x2(2) | Xo() |

0 ! 0 f
(0 (d)
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TRANSMISSION: EANDWIDTH DEFINITION

General shape of
power spectral  -----— fe == |
density (PSD) | i

PSD

(d) — —J
——(e) 35dB
(e) 50 dB—

-

— (@) Half-power bandwidth:

« The interval between which that G(f) has dropped to half (3 dB) of
its peak value. G(f,z)/G(f.)=1/2

— (b) Equivalent rectangular bandwidth

« The bandwidth of an equivalent rectangular filter with magnitude the
same as the peak of G(f) and has the same total power of G(f)

W =P/G(f,)
— (c) Null-to-null bandwidth
» The width of the main spectral lobe.



TRANSMISSION: EANDWIDTH DEFINITION
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sin n(f—f)T |2
General shape of G(f) = T[ n(f~ﬂ)%}
power spectral -----— - |
density (PSD) | | ‘

1 f o]
| ez | | |fetg
=] |

\ ‘ (b)——| ‘ ‘,

I (c) \

(d) — —J
—(e) 35dB
— (e) 50 dB—

— (d) Fractional power containment bandwidth (FCC definition)

» The occupied bandwidth is the band that leaves exactly 0.5% of the signal
power above the upper band limit and exactly 0.5% of the signal power below
the lower band limit. Thus 99% of the signal power is inside the occupied
band.

— (&) bounded power spectral density

» Everywhere outside the specified band, G(f) must have fallen at least to a

specified value (e.g. 35 dB) below its peak value.
— (f) absolute bandwidth:

« The interval between frequencies, outside of which the PSD is zero.



