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OUTLINE 

 

 

• Deterministic signals (Ch. 1.2, 1.3, 1.6 Appendix A) 

 

• Random Signals 

 

• Signal transmission through linear system, bandwidth 
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• Deterministic v.s. Random 

– Deterministic signal: there is no uncertainty w.r.t. signal value at any time. 

• E.g.  

DETERMINISTIC: SIGNAL CLASSIFICATION 

• Deterministic v.s.  

– Deterministic signal: there is no uncertainty. 

• E.g.  )5cos()2exp(5)( tttx 

– Random signal: there is some degree of uncertainty before the signal occurs. 

• E.g. noise 

• Periodic v.s. Nonperiodic 

– A signal is called periodic in time if there exists a constant               such that  
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– The smallest               satisfying the above equation is called fundamental period. 

• E.g. find the fundamental period of  

 

00 T
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• Continuous-time v.s. Discrete-time signal 

– Continuous-time signal: the signal is defined over continuous-time. 

– Discrete-time signal: a signal that exists only at discrete-time values.  

– Discrete-time signals are undefined at                 

 

 

)(tx

)(kx),( skTx

skTt 



4 

DETERMINISTIC: SIGNAL 

• Energy signal v.s. Power signal 

– Instantaneous power of a signal 

– Energy of a signal dissipated during interval  
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• Power signal:   P0
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DETERMINISTIC: SIGNAL 

• Example: 

 

– Find the fundamental period. 

– Find the average power. 

)cos()( 00   tAtx
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DETERMINISTIC: SIGNAL 

• Unit step function 
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DETERMINISTIC: SIGNAL 

• Unit impulse function (Dirac delta function) 
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DETERMINISTIC: SYSTEM 

• Linear system 

– A system is linear if the superposition principal is satisfied. 

 
System 

)(1 tx )(1 ty

System 
)(2 tx )(2 ty

System 
)()( 21 txtx   )()( 21 tyty  

• Time-invariant system 

– A system is time-invariant if a time shift in the input signal causes an 

identical time shift in the output signal 

Time-invariant 

System 

)(ty)(tx )( 0ttx  Time-invariant 

System 

)( 0tty 

• Linear time-invariant (LTI) system 

– A system is both linear and time-invariant. 
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DETERMINISTIC: SYSTEM 

• Impulse response of LTI system 

– Def: the output (response) of a system when the input is a unit impulse 

function (delta function). Usually denoted as h(t) 
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• Response of LTI system to arbitrary input 
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• Convolution 
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– Example: evaluate the convolution  
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DETERMINISTIC: SYSTEM 

• Example 

– A system has impulse response                                 . If the input is 

                              , find the output. 

    

)()exp()( tuatth 

)()exp()( tubttx 



 

Jingxian Wu, 8/15/2007 

11 

DETERMINISTIC: FOURIER ANALYSIS 

• Fourier transform 


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– Frequency domain representation of signal. 

• Inverse Fourier transform 
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• Example: 

– Find the Fourier transform of  )/()( trecttx 
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DETERMINISTIC: FOURIER ANALYSIS 

• Selected properties 

– Linearity 

• If  

• Then 
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– Time shift 

• If  

• Then 
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– Convolution 

• If  
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– Duality 

• If  

• Then 
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DETERMINISTIC: FOURIER ANALYSIS 

• Examples 

– Find the Fourier transform of  )()( ttx 

– Find the Fourier transform of   )()( 0tttx 

 tfAtx 02cos)( 

– Find the Fourier transform of   

– Find the Fourier transform of   

atjetx 2)( 
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DETERMINISTIC: FOURIER ANALYSIS 

• Fourier series 

– For any periodic signal with fundamental period T, it can be decomposed 
as the sum of a set of complex exponential signals as 
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• Parsaval’s theorem 

– Energy signal:  

– Power signal:  
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– Fourier transform of periodic signal (perform Fourier transform on both 
sides of Fourier series) 
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DETERMINISTIC: ENERGY SPECTRAL DENSITY 

• Energy spectral density (ESD) 

– The distribution of the signal’s energy in frequency domain. 

• The “density” of energy. Unit: Joul/Hz 

– E.g. 1: If the ESD of signal           is              ,  then the energy in frequency 

range                       is: 

– E.g. 2: the energy in frequency range                  is: 
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– Def: If                         , then the ESD of energy signal is  
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DETERMINISTIC: POWER SPECTRAL DENSITY 

• Power spectral density (PSD) 

– The distribution of signals power in frequency domain 

• The density of power (unit: watt/Hz) 

– PSD of power signal is the  
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– E.g. Find the PSD and power of  
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OUTLINE 

 

• Deterministic signals  

 

 

• Random Signals (Ch. 1.5) 

 

• Signal transmission through linear system, bandwidth 
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RANDOM SIGNAL 

• Random variable (RV): 

– Random variable: X(A) represents the functional relationship between a 
random event A and a number X.  

– Example:  

• Random event A: toss coin;  

• Mapping between coin toss and number: 

– coin head  X = 0; coin tail  X = 1. 

 
• Discrete RV, probability mass function (PMF) 

– Example:  

• An urn has 2 black balls, 5 white balls, and 3 red balls, pick one ball 
out of urn 

– Random event A: black ball, white ball, red ball 

• RV: X: black ball  X = 0; white ball  X = 1; red ball  X = 2. 

• PMF: 

 
 )0(XP

 )1(XP

 )2(XP
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RANDOM SIGNAL 

)()( 2121 xFxFxx XX 

• Cumulative Distribution Function (CDF) 

– The CDF of a random variable X is given by 

)()( xXPxFX 

RV The variable of the function 
• The probability that the RV X is less than or equal to a real number x. 

– Some properties:  

0)( XF 1)( XF 1)(0  xFX

)()()( 1221 xFxFxXxP XX 

• Cumulative Distribution Function (CDF) 

– The CDF of a random variable X is given by 

)()( xXPxFX 

RV The variable of the function 
• The probability that the RV X is less than or equal to a real number x. 

– Some properties:  

0)( XF 1)( XF 1)(0  xFX

– Example: 

• The CDF of the RV in the previous example 

 

Discrete RV can be characterized by PMF, CDF 
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RANDOM SIGNAL 

• Probability Density Function (pdf) 

dx

xdF
xp X

X

)(
)( 

– The “density” of probability. 

• E.g. the probability that the RV                            :   ],[ xxxX 

• The probability that the RV                       :   ],[ 21 xxX 

– Properties of pdf   

0)( xpX 1)( 
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RANDOM SIGNAL 

• Continuous RV 

– The RV can take continuous values. 

– Continuous RV can be characterized by its pdf or CDF. 

• Uniform distribution 

– pdf 

bxa
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

 ,
1

)(

– The RV X has equal probability to be  

 any value in the range of  

 

],[ ba
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RANDOM SIGNAL 

• Mean (Ensemble Average, 1st moment, expected value) 

– The mean value of a random variable is defined by 





 dxxxpXEm XX )()(

– Example: 

• The exponential distribution has pdf  

 

 

 

– Find its mean value. 

  0,0,exp)(   xxxpX

  )()( kkX xXPxXEm
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RANDOM SIGNAL 

• The n-th moment of a RV is defined as 


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 dxxpxXE X
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• The n-th central moment of a RV is defined as 
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• Variance (average power of a zero-mean random signal) 

– Second central moment.     2222 )( XXX mXEmXE 

– Standard deviation (root mean square value, rms):  

 
X
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RANDOM SIGNAL 

• Gaussian distribution (Normal distribution) 

– A random variable is Gaussian distributed if the pdf is 
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– Gaussian pdf is fully characterized by its mean 

 m and variance  

– Y = aX+b is still Gaussian 

– Example: prove the mean of Gaussian RV  

 is m 

2
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RANDOM SIGNAL: JOINT DISTRIBUTION 

• Joint distribution 

– Two RVs X, Y, the joint CDF is defined as 

),(),(, yYxXPyxF YX 

– Example 

X Y Prob. 

0 0 0.2 

0 1 0.2 

1 0 0.5 

1 1 0.1 

 )0(XP

 )1(YP

 )0&0( YXPjoint PMF: 

marginal PMF: 

marginal PMF: 

conditional PMF:  )1|0( YXP

(if we already know that Y = 1, what is the probability that X = 0?) 
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RANDOM SIGNAL: JOINT DISTRIBUTION 

• Independent RVs 

–                                                     X and Y are independent. 

– Independence: there is no relationship between the two RVs.  

• Joint pdf 

)((x)F),( Y, yFyxF XYX 
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• Marginal pdf 
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–                                                     X and Y are independent  

                                                    

)()(),(, ypxpyxp YXYX 

• Conditional pdf 

                                                    

)(

),(
)|(|

yp

yxp
yxp

Y

XY
YX  )(

),(
)|(|

xp

yxp
xyp

X

XY
XY 



27 

RANDOM SIGNAL: JOINT DISTRIBUTION 

• Example 

– Find the marginal pdf and conditional pdf of  

0,0,),(,   yxeyxp yx

YX

– Are they independent? 
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RANDOM SIGNAL: JOINT DISTRIBUTION 

• Correlation and covariance 

– The correlation between two RVs X and Y: 

   







 dxdyyxxypXYEYXcorr YX ),(),( ,

– The covariance between two RVs X and Y: 

    YxYX mmXYEmYmXEYX  ][),cov(

• Uncorrelated 

– Two RVs X, Y are uncorrelated if 

– If two RVs are uncorrelated, what is their covariance?  

 

 

– If two RVs are independent, then they are uncorrelated. (Why?) 

• But not the other way around!!! 

  ][][ YEXEXYE 
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RANDOM SIGNAL: RANDOM PROCESS 

• Random process 

– A random process can be viewed as a RV changes w.r.t. time: 

• A function of two variables: X(A, t)  

– Sample function: 

• Each sample function corresponds to one of the random events. 

• For a specific event      , we have a single sample function             .  

• The collection of all sample functions is called ensemble. 

– Random variable:  

• For a specific time      , we have a RV 

• Random process is a collection of RVs. 
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RANDOM SIGNAL: RANDOM PROCESS 

• Mean (ensemble average) 

 )()( kkX tXEtm 

– The mean is a function of time! 

• Autocorrelation function 

 )()(),( 2121 tXtXEttRX 

– The correlation of two RVs. 

– Autocorrelation function is a function of two variables  21, tt

• Stationary (strict) 

– A random process is stationary in the strict sense if none of its properties 

is affected by a shift in time. 

• Wide-sense stationary (WSS) 

– A random process is WSS if its mean and autocorrelation function do not 

vary with a shift in the time. 

• Mean is independent of time:  

• Autocorrelation depends only on time difference:  

XkX mtm )(

)(),( 2121 ttRttR XX 

)(XR
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RANDOM SIGNAL: RANDOM PROCESS 

• Example:  

 Consider a stationary sequence of independent binary bits. Each bit has 

equal probability of being or -1 or 1. The bit period is T.  

– Find the mean of the random process. 

– Find the average power of the random process. 
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RANDOM SIGNAL: POWER SPECTRAL DENSITY 

• Power spectral density (PSD) 

– The distribution of the signal’s power in the frequency domain. 

• The “density” of power in the frequency domain (unit: watt/Hz). 

– It allows the evaluation of signal power in a certain frequency range. 

• The power in frequency range 

• The power in frequency range  

– PSD of a WSS random process is the Fourier transform of its 

autocorrelation function 

)]([)( XX RFfG 

:],[ fff 

:],[ 21 ff
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RANDOM SIGNAL: NOISE 

• Noise 

– Unwanted electrical signals that are always present in electrical system. 

• Man-made noise: spark-plug ignition noise, switching transients, 

other radiating electromagnetic signal. 

• Natural noise: thermal noise, elements of atmosphere, etc. 

• Thermal noise: 

– Caused by thermal motion of electrons in all electronic components: 

resistors, diodes, transistors, wires, … 

– Become worse with the increase of temperature. 

– Thermal noise is a random process X(A, t) 
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RANDOM SIGNAL: NOISE 

• Statistical properties of thermal noise 

– At a specific time     ,                  is zero-mean Gaussian distributed 

• Gaussian noise    

),( ktAXkt
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– Its power spectral density is the same for all frequencies. 

• White noise 

)(XR

• PSD  

• Autocorrelation function:  

  Additive White Gaussian Noise (AWGN) 

 

2
)( 0N

fGX 

– Any two different noise samples are uncorrelated.  
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OUTLINE 

 

• Deterministic signals  

 

 

• Random Signals  

 

 

• Signal transmission through linear system, bandwidth (Ch. 1.6, 

1.7) 
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TRANSMISSION 

• Frequency transfer function (frequency response) 

 )(
)(

)(
)( thF

fX

fY
fH 

• LTI system 

)(tx

LTI 

)(ty)(th
)( fX )( fY)( fH

– In general, H(f) is complex 

 

 

• Magnitude response:  

 

• Phase response:  

)(|)(|)( fjefHfH 

   )(Im)(Re|)(| 22 fHfHfH 

 
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)(Im
arctan)(
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f 



37 

TRANSMISSION 

• Random process passes through linear system 

),( tAX

LTI 

),( tAY)(th
)( fGX )( fGY)( fH

– If the input is a random process X(A, t), then the output is a random 

process Y(A, t). 

– Generally speaking, Y and X follow different distributions 

• However, if X is Gaussian distributed, Y is still Gaussian! 

– Linear combination of Gaussian is still Gaussian. 

– The PSD of X and Y are related by the following equation 
2

)()()( fHfGfG XY 

• If the input is white Gaussian random process, then the output is 

colored Gaussian with PSD determined by H(f)  this can be used to 

generate colored Gaussian random process. 
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TRANSMISSION: IDEAL TRANSMISSION 

• Ideal transmission (distortionless transmission) 

– The output has some delay compared to the input 

– The output has a different amplitude compared to input 

– It must have the same shape as the input: no distortion. 

 )()( 0ttKxty 

– Frequency domain system equation: 

– Transfer function: 

• Amplitude response:  

• Phase response:  
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TRANSMISSION: IDEAL TRANSMISSION 

• Ideal filters   

• Example 

– Pass a white noise with PSD                     through an ideal low pass filter 

with bandwidth         . Find the autocorrelation function at the output of 

the filter.               

2
)( 0N

fGX 

uf

bandpass lowpass highpass 
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TRANSMISSION: RELIAZABLE TRANSMISSION  

• Example: 

– RC filter 

fRCj
fH

21

1
)(




– Butterworth filter  

1,
)/(1

1
)(

2



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ff
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TRANSMISSION: BANDWIDTH 

• Baseband v.s. Bandpass 

– A baseband signal can be shifted to a higher frequency by multiplying it 
with a carrier wave  tfc2cos

tftxtx cc 2cos)()( 

– In the frequency domain  

 )()(
2

1
)( ccc ffXffXfX 

DSB: Double side band, USB: upper side band, LSB: lower side band  

Bandpass bandwidth is twice of baseband bandwidth.  
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TRANSMISSION: BANDWIDTH DILEMMA 

• Dilemma 

– Strictly band limited signal imply infinite duration  

– Duration limited signal has infinite bandwidth  

 A signal cannot be limited in both time domain and frequency domain. 

–  duration limited signal is realizable realizable signal is unlimited in 

frequency domain. 
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TRANSMISSION: BANDWIDTH DEFINITION 

– (a) Half-power bandwidth: 

• The interval between which that             has dropped to half (3 dB) of 

its peak value.  

– (b) Equivalent rectangular bandwidth 

• The bandwidth of an equivalent rectangular filter with magnitude the 

same as the peak of            and has the same total power of    

)( fG

2/1)(/)( 3 cdB fGfG

)( fG )( fG

)(/ cfGPW 

– (c) Null-to-null bandwidth 

• The width of the main spectral lobe. 

PSD 
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TRANSMISSION: BANDWIDTH DEFINITION 

– (d) Fractional power containment bandwidth (FCC definition) 

• The occupied bandwidth is the band that leaves exactly 0.5% of the signal 

power above the upper band limit and exactly 0.5% of the signal power below 

the lower band limit. Thus 99% of the signal power is inside the occupied 

band. 

– (e)  bounded power spectral density 

• Everywhere outside the specified band, G(f) must have fallen at least to a 

specified value (e.g. 35 dB) below its peak value. 

– (f) absolute bandwidth: 

• The interval between frequencies, outside of which the PSD is zero.  


