ELEG 5633 Detection and Estimation Project 2: MMSE Estimation

1 Problem

Consider

$$x_n = a\cos(2\pi f_0 n) + b\sin(2\pi f_0 n) + w_n, n = 0, 1, \dots, N - 1$$

where $f_0 = 1/N$, and w[n] is WGN with variance σ^2 . It is desired to estimate $\boldsymbol{\theta} = [a, b]^T$, under the assumption that $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \sigma_{\theta}^2 \mathbf{I})$, and $\boldsymbol{\theta}$ is independent of w[n].

2 Theory

- 1. Find the MMSE estimator of $\boldsymbol{\theta}$.
- 2. Find the error covariance matrix Σ_e and BMSE $\sigma_e^2 = \text{tr}\Sigma_e$, as a function of σ_{θ}^2 and σ^2 .

3 Procedures

3.1 Impacts of SNR

Set $\sigma_{\theta}^2 = 1$. Find the simulated BMSE at $\gamma = \frac{\sigma_{\theta}^2}{\sigma^2} = 0$: 5: 20 dB with N = 10. Plot the analytical BMSE and simulated BMSE in the same figure as a function of SNR (in dB).

Hints:

- 1. For each value of SNR, get the simulated BMSE by averaging over 10,000 trials.
- 2. For each trial, randomly generate a, b and w_n . That is, the values of a, b, and w_n should be different at different trials.
- 3. Plot the BMSE in log-scale by using the Matlab function semilogy.
- 4. Use a curve to represent the analytical BMSE and marks (such as '*') to represent simulation results.
- 5. turn on the grids in the figure by using the Matlab function "grid on"

3.2 Impacts of N

Find the simulated BMSE at N = 5:5:20 with $\sigma_{\theta}^2 = 1$ and $\gamma = 5$ dB. Plot the analytical BMSE and simulated BMSE in the same figure as a function of N.