ELEG 5633 Detection and Estimation Detection Theory II

Jingxian Wu

Department of Electrical Engineering University of Arkansas

1

Outline

- Motivation
- Composite Hypothesis Testing
 - Uniformly Most Powerful (UMP) test
 - Bayesian approach
 - Generalized likelihood ratio test (GLRT)

Motivation

So far, we have learned

- ▶ Bayesian Detector: given $p(x|H_0)$, $p(x|H_1)$, π_0, π_1 , cost assignment LRT; MAP; ML
- ▶ NP-detector: given $p(x|H_0)$, $p(x|H_1)$ LRT
- Deterministic signal matched filter; generalized matched filter
- Random signal energy detector, estimator-correlator.

The distribution of X under H_0 , H_1 are known.

What if the PDF of X is not completely known?

Composite Hypothesis Testing

• Assume the PDF of X has unknown parameters under H_0 and H_1

 $H_0: X \sim p_0(x|\theta_0), \theta_0 \in \Theta_0$ $H_1: X \sim p_1(x|\theta_1), \theta_1 \in \Theta_1.$

- Composite hypothesis test: if Θ_0 or Θ_1 contains more than one element.
 - test the hypothesis of more than one models
- Simple hypothesis test: if Θ_m contains a single element, for m = 0, 1.

Composite Hypothesis Testing

Three main approaches

- Uniformly Most Powerful (UMP) test
- Bayesian approach
- Generalized likelihood ratio test (GLRT)

Uniformly Most Powerful (UMP) Test

Consider a composite hypothesis test $X \sim p(x|\theta)$, where

$$H_0: \theta = \theta_0$$
$$H_1: \theta \in \Theta_1.$$

Definition

A UMP test is a hypothesis test that has the greatest power (i.e., P_D) $1 - \beta$ among all possible tests of a given size (i.e., P_{FA}) α for all $\theta \in \Theta_1$.

- ► UMP may not exist.
- ▶ For a UMP test to exist, the parameter test must be one-sided.

Example

Given N observations, x[n], n = 0, 1, ..., N - 1, which are i.i.d and, depending on the hypothesis, generated according to

$$H_0: X[n] = W[n]$$
$$H_1: X[n] = A + W[n]$$

where $W[n]\sim \mathcal{N}(0,\sigma^2).$ The value of A is unknown, although a priori we known A>0 (one-sided) .

Solution: The NP test is to decide H_1 if

$$\frac{p(\mathbf{x}|A, H_1)}{p(\mathbf{x}|H_0)} = \frac{\frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=1}^{N-1} (x[n] - A)^2\right]}{\frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=1}^{N-1} x[n]^2\right]} > \gamma$$

i.e.,

$$A\sum_{n=1}^{N-1} x[n] > \sigma^2 \ln \gamma + \frac{NA^2}{2}$$

Since A > 0, we have

$$T(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N-1} x[n] > \frac{\sigma^2}{NA} \ln \gamma + \frac{A}{2} = \gamma'$$

Question: Can we implement this detector without knowing the exact value of A?

$$P_{\mathsf{FA}} = \mathbb{P}[T(\mathbf{x}) > \gamma' | H_0] = Q\left(\frac{\gamma'}{\sqrt{\sigma^2/N}}\right)$$

So that

$$\gamma' = \sqrt{\sigma^2/N} Q^{-1} \left(P_{FA} \right)$$

For a given P_{FA} , the threshold of the NP test is independent of A! Under H_1 , $T(\mathbf{x}) \sim \mathcal{N}(A, \sigma^2/N)$, thus

$$P_{\mathsf{D}} = Q\left(\frac{\gamma' - A}{\sqrt{\sigma^2/N}}\right) = Q\left(Q^{-1}\left(P_{\mathsf{FA}}\right) - \sqrt{\frac{NA^2}{\sigma^2}}\right)$$

The NP detector yields the highest $P_{\rm D}$ for any value of A, as long as A > 0.

UMP Test

Two-sided UMP test does not exist

Consider a two-sided test

 $H_0: A = 0$ $H_1: A \neq 0$

If A > 0, $T(\mathbf{x}) > \sqrt{\sigma^2/N}Q^{-1}(P_{\mathsf{FA}})$; If A < 0, $T(\mathbf{x}) < -\sqrt{\sigma^2/N}Q^{-1}(P_{\mathsf{FA}})$

Since the value of A is unknown, the NP approach does not result in a unique test.

Suboptimal Tests

When a UMP does not exist, we need to implement suboptimal tests.

- Consider the unknown parameters as realizations of random variables and assign a prior PDF.
 - \Rightarrow Bayesian approach
- Estimate the unknown parameters for use in a likelihood ratio test.
 - \Rightarrow Generalized likelihood ratio test (GLRT)

Bayesian Approach

The Bayesian approach assigns prior PDFs to θ₀ and θ₁, denoted by p(θ₀) and p(θ₁).

$$p(\mathbf{x}|H_0) = \int p(\mathbf{x}|\theta_0, H_0) p(\theta_0) d\theta_0$$
$$p(\mathbf{x}|H_1) = \int p(\mathbf{x}|\theta_1, H_1) p(\theta_1) d\theta_1$$

• The optimal NP detector decides H_1 if

$$\frac{p(\mathbf{x}; H_1)}{p(\mathbf{x}; H_0)} = \frac{\int p(\mathbf{x}|\theta_1; H_1) p(\theta_1) d\theta_1}{\int p(\mathbf{x}|\theta_0; H_0) p(\theta_0) d\theta_0} > \gamma$$

- It requires multi-dimensional integrations.
- ▶ The choice of the prior PDFs can be difficult.

Generalized Likelihood Ratio Test (GLRT)

▶ The GLRT decides H_1 if

$$L_G(\mathbf{x}) = \frac{\max_{\theta_1 \in \Theta_1} p(\mathbf{x}|\theta_1, H_1)}{\max_{\theta_0 \in \Theta_0} p(\mathbf{x}|\theta_0, H_0)} > \gamma$$

- The first step is to find the maximum likelihood estimation (MLEs) of θ_0 and θ_1 .
- The GLRT can be performed in two steps
 - ▶ Step 1 (MLE): find the parameter $\theta_m \in \Theta_m$ that can maximize the likelihood function:

$$\hat{\theta}_m(\mathbf{x}) = \underset{\boldsymbol{\theta}_m \in \boldsymbol{\Theta}_m}{\operatorname{argmax}} p(\mathbf{x}|\boldsymbol{\theta}_m, H_m)$$

Step 2 (LRT): formulate the LRT by using the estimated parameters $\hat{\theta}_0(\mathbf{x})$ and $\hat{\theta}_1(\mathbf{x})$

$$L_G(\mathbf{x}) = \frac{p(\mathbf{x}|\hat{\theta}_1(\mathbf{x}), H_1)}{p(\mathbf{x}|\hat{\theta}_0(\mathbf{x}), H_0)} > \gamma$$
(1)

Example

Consider X[n] = A + W[n], n = 0, 1, ..., N - 1, where W[n] is WGN with PDF $\mathcal{N}(0, \sigma^2)$. We have two hypotheses

$$H_0 : A = 0$$
$$H_1 : A \neq 0$$

What is the GLRT?

Solution:

► Step 1 (MLE):

$$\hat{A} = \operatorname*{argmax}_{A \neq 0} p(\mathbf{x}; A, H_1) = \operatorname*{argmin}_{A \neq 0} \ \sum_{n=1}^N (x[n] - A)^2 = \frac{1}{N} \sum_{n=1}^N x[n]$$

► Step 2 (LRT):

$$L_G(\mathbf{x}) = \frac{p(\mathbf{x}|\hat{A}, H_1)}{p(\mathbf{x}|H_0)} > \gamma$$

Test statistic

$$T(\mathbf{x}) = \sum_{n=1}^{N} (2x[n]\hat{A} - \hat{A}^2) = \frac{1}{N} (\sum_{n=1}^{N} x[n])^2 > \gamma'$$

▶ Under H_0 : $Y_N = \sum_{n=1} x[n] \sim \mathcal{N}(0, N\sigma^2)$, thus

$$H_0: \left(\frac{Y_N}{\sqrt{N\sigma^2}}\right)^2 = \frac{1}{N\sigma^2} (\sum_{n=1}^{N} x[n])^2 = \frac{1}{\sigma^2} T(\mathbf{x}) \sim \chi^2(1)$$

$$\begin{split} P_{\mathsf{FA}} &= \Pr\left(\frac{1}{\sigma^2}T(\mathbf{x}) > \frac{\gamma'}{\sigma^2}|H_0\right) = \Gamma\left(\frac{\gamma'}{2\sigma^2}, \frac{1}{2}\right)\\ \gamma' &= 2\sigma^2\Gamma^{-1}\left(P_{\mathsf{FA}}, \frac{1}{2}\right) \end{split}$$