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Detection Theory

» Binary Bayesian hypothesis test
Likelihood Ratio Test

» Minimum probability of error
» MAP: maximum a posteriori
» ML: maximum likelihood

v

» Neyman-Pearson test
> Receiving Operating Characteristics (ROC) curves

» M-ary hypothesis testing
» Composite hypothesis testing



A Binary Detection Example
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Modulated Signal

Channel Decoder Destination

0 : so(t) = sin(wot)
1:s1(t) = sin(wyt)

() = { so(t) +n(t)

if ‘0’ sent

s1(t) +n(t) if ‘1’ sent

Hy : ‘0 is sent

Hy : ‘1’ is sent



Another Binary Detection Example

www'\nml‘wnp/wu u‘ | J U il "[
=
M\A»»—vw%ﬁw i il

i
Early seizure

Intervention
detection
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Early seizure detection triggers an intervention.
k different channels: z;[n],i =1,2,... k.

Ho:
H1 :
H():

‘no seisure’

‘seisure’

Rk — {Ho,Hl}
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Hypothesis Test

Each possible scenario is a hypothesis.
» M hypothesis, M > 2: {Hoy, Hy,...,Hpy—1}
Observed data: = = |71, 29, ..., 74]T

» scalarcase: k=1

Hypothesis Test Procedure

» Based on observation z, get an estimat of He {Hy, Hy,

H(): R*F = {Ho,Hi,...,Hy_1}

oo Hyq}

(1)



Hypothesis Test: Classifications

Random hypothesis test
» [ is a random variable, taking one of {Hy, Hy,...,Hp—1}
> A priori probabilities: ,, 1= P[H = H,,]
» Likelihood function: X ~ px g (x|H;)

Nonrandom Hypothesis test
» No proper priors about H
> Given H = H,,,, X is still random: X ~ px(z; Hp,)

Performance Criterion
» Generalized Bayesian risk

> Neyman-Pearson (NP)



Binary Random Hypothesis Testing: H vs H;

Given:

» Hypothesis
null hypothesis: Hy
alternative hypothesis: H,
» Priors

o = ]P[H = Ho]
T = ]P[H = Hl]

» Measurement model/ likelihood function

Ho: X ~po
HltXNpl



Example

Additive Gaussian White Noise (AWGN) communication channel. A bit, 0 or 1, is
sent through a noisy channel. The receiver gets the bit plus noise, and the noise is
modeled as a realization of a A/(0,1) random variable. Assume that both 0 and 1
are equally likely, i.e., Py = P; = 1/2. Once the receiver receives a signal z, it
must decide between two hypotheses,

Hy: X ~N(0,1)
Hli XNN(I,l)

Question: How to design the decision rule H(z)?



Decision Regions

Decision
L — " Rule >

A decision is made by partitioning the
range of X into two disjoint regions.

Ry = {z : H(z) = Hy}
Ry ={z:H(z)=H}

Example
x = [11,72)T € R?

T2

Question: How to design the decision regions Ry and R17?
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Expected Cost Function Metric

» To optimize the choice of decision regions, we can specify a cost for decisions.
» Four possible outcomes in a test:

Hy H,

H = Hy | correct | incorrect

H = H | incorrect | correct
> Denoted as (4,5),4,j € {0,1}, i: decision H;; j: true distribution H;

> Assign a cost ¢; ; for each outcome (i, 7),%,j € {0,1}

Example

Cost Assignment example:
1) Digital communications: co9 =0, co1 =1, c10=1,¢11 =0.
2) Seizure detection: Hy : ‘no seizure’; Hy : 'seisure’

Co,1 > C1,0
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Bayes Cost

» Bayes Cost: the expected cost associated with a test

C =

™-

¢ j - P(decide H;, H; is true)
0

%,J
1

¢; jm; - P(decide H;|H; is true)
0

,J
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Bayes Cost

» Express Bayes cost directly in terms of the decision regions

1
C = Z civjﬂjIP(decide HZ|H] is true)
,7=0

1
= Z CiVjﬂ'jIP(X € Ri‘Hj is true)
i,j=0

1
= Ciﬂj/ pj(z)dx
i,j=0 o

= / [co,0mopo(x) + comipr(x)] dx + / [e1,0mopo(z) + c11mip1(z)] dz
Ro Rl

Objective: design Ry and R; such that the Bayes cost C' is minimized.
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Optimum Decision Rule: Likelihood Ratio Test

To minimize the Bayes cost, we should design the decision regions as

Ry :={z : coomopo(x) + co,1mip1(x) < e1,0mopo(x) + c11mipa ()}
Ry :={z : coomopo(x) + coamipr(x) > c10mopo(x) + c1imipi ()}

Therefore, the optimal test takes the following form:

p1(x) Hi mo(c1,0 — Co,0)
<
po(df) Ho 7T1(Co,1 - 01,1)

13



Likelihood ratio test (LRT)

H _
L(x) := pi(@) zlfy, = w can be precomputed
po(z) Ho m1(co1 — 11

H ~
r — L) — L§17_> b2l
0
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Special Cases: MAP Detector

> ¢;; =1 —6[i — j], then Bayes cost = Probability of error, i.e., P.
The likelihood ratio test reduces to

p1(x) Hm
( Ho m

)
mipy (@ ) 7TOPO( )

H
P[H = H1|x]g P[H = Hy|z]
O

This is called Max a Posteriori (MAP) Detector
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Special Cases: ML Detector

> If 7o = 11, ¢ij =1 —0[i — j], LRT reduces to

S
Py
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E

This is called Maximum Likelihood (ML) Detector



Properties of LRT

» L(z) is a sufficient statistic.
It summarizes all relevant information in the observations.

» Any one-to-one transformation on L is a sufficient statistic.
g(-): an invertible function

l(z) == g(L(x))

If g(-) is monotonically increasing

Eg: g(x) =Inzx
» LRT indicates decision regions

Ro={z: H(z)=Hy} = {z: L(z) <~}
Ry ={z:H(z)=H}={x: L(z) >~}
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Example

Additive Gaussian White Noise (AWGN) communication channel. A bit, 0 or 1, is
sent through a noisy channel. The receiver gets the bit plus noise, and the noise is
modeled as a realization of a A/(0,1) random variable. Assume that both 0 and 1
are equally likely, i.e., mp =m =1/2. Let¢;; =1ifi# 7, ¢;; =0if i = j.
What is the optimal decision rule to minimize the expected cost?

Hy: X ~N(0,1)
Hll XNN(l,l)

05+




Example
Additive Gaussian White Noise (AWGN) communication channel. Two messages
m = {0, 1} with probabilities 7y = 1. Given m, the received signal isa N x 1

random vector
X=s,+W

where W ~ N(0,0%Inxn). {s0,51} are known to the receiver.
Design an optimal detector w.r.t P, criterion.
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Neyman-Pearson Hypothesis Testing

» Two types of errors

Hy Hy
H = H, correct Miss Detection
H = H; | False Alarm correct

Type |: Pra = P[H = H,|Hy) = / po(x)dx
Ry

Type ll: Pyp = P[H = Hy|H,] :/ p1(z)da
Ro

Note: Pup = 1 — Pp, where Pp = le p1(z)dz.
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Neyman-Pearson Hypothesis Testing

» Nyeman-Pearson Design Criterion:
Minimizes one type of error subject to a constraint on the other type of error.

minimize Pup

subject to  Pra < «

Such design does not require prior probabilities nor cost assignments.
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Neyman-Pearson Theorem

Theorem
To maximize Pp with a given Pra < «, decide Hy if

_ pz|H))
" p(z|Ho)

L(z)

>\

where X\ is found from

Ppa = / p(z|Hp)dz = «
z:L(z)>A
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Example
Assume the scalar observation X is generated according to

Hy :X ~ N(0,03)
Hy :X ~N(0,0}), o> o0}

what is the NP test if we want to have Pea < 10737

» Note: Q(z) = [~ \/% exp (—%) dy
» in Matlab, y = Q(z) is qfunc(x), and = = Q~!(y) is qfuncinv(y)
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Example

Given N observations, X;,i=1,2,..., N, which are i.i.d and, depending on the
hypothesis, generated according to

Hy :X; ~N(0,02)
Hy :X; ~N(0,0%), of>o0p

What is the NP test for N = 20 and Pra = 0.017

» Chi-squared distribution:
> if X; ~ N(0,1), then Y := 3 | X2 ~ x2(k)
k

» PDF: py (y; k) = (g)

» Pr(Y >7)=T(%,%), where I'(z,a) =
incomplete Gamma function.

» in Matlab, y = T'(z, a) is gammainc(x, a, 'upper’). z =T"(y,a) is
gammaincinv(y, a, 'upper’)

» example: 7 = 2Xx gammaincinv(0.01, 20/2, 'upper’) = 37.57

~ .

= 1"(1(1) [ t* e dt is the upper
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Example
Given N observations, X;,i=1,2,..., N, which are i.i.d and, depending on the
hypothesis, generated according to
HO Xz = W1
Hi:X;=pu+W;
where W; ~ N(0,0?).
What is the NP test if we want to have Pra < 10737
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Receiver Operating Characteristics (ROC) of the LRT

ROC: plot Pp versus Pra; summarizes the detection performance of NP-test.

» LRT: L(z) := ig}g;g >y

Po()= [ plalH)da
:L(z)>v
Pra(7) 2/ p(z|Ho)dx
:L(z)>~v
> ’y:OZ PD:PF/_\Zl

> y=400: Pp=PFPa=0

> As v increases, both Pp, Pra decrease
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FN
1 1
100%
PaOP)| .~
0% PFP) 100%

TP: true positive; FP: false positive; TN: true negative; FN: false negative
27



Properties of ROC

» The ROC is a nondecreasing function.
» The ROC is above the line Pp = Pr4.

» The ROC is concave.
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M-ary Hypothesis Testing

» Now, we wish to decide among M hypotheses {Hy, Hy ..., Hp—1}.
» Focus on the Bayesian test.

Priors: mg, ™1, ..., Tam—1.

Likelihood: px g, (x|H;), denoted as p;(x).
» The Bayes cost

C= Z c;;mj - P(decide H;|H; is true)

i=0 j=0
M-1 . M-1

= Z / cijmip;(x
i=0 " i j—0o
M—1

= / hi(z)dz
=0 R;

> Define Mt
hi(z) = Z cijmp; (2)
§=0



» To minimize the Bayes cost, we let

Ri ={x: hi(x) < h;(2),Vj # i}

» Equivalently, for a given x, we pick the hypothesis corresponding to the
smallest C;(z)

H(z)=  argmin  h;(x)
ie{0,1,....M~1}
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Special Cases: MAP detector

> ¢;; =1 —6[i — j], then Bayes cost = Probability of error, i.e., P.

M-1
hi() = ciympi() =Y m;ps(x)
§=0 J#i

M-1
= ijj(ilf) — mipi(x)
7=0
H(z) = argmin hi(z)

H;€{Ho,Hy,....Hp—1}

= argmax i ()
H;€{Ho,Hy,....Hn—1}

» Max A Posteriori (MAP) Detector for M-ary case P(H;|z) = i)

p(x)
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Special Cases: ML detector
> Ifmg=... =71 = 17, cij = 1 — 6[i — j], MAP reduces to
H(z) = argmax mipi ()
H;€{Ho,H1,....Hn—1}
= argmax pi()

H;e{Ho,H1,....Hn 1}

» Maximum Likelihood (ML) Detector for M-ary case.
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Example

Assume that we have three hypotheses

HoiXi:—S—FWi, 221,,]\7
HliXiZWi 221,
Hy:X;=s+W,;, 1=1,...,N

where W; are i.i.d N(0,1), s is a positive constant.
What is the optimal decision rule to minimize P, if mg = 71 = mo = 1/37

What if N =1, i.e., a scalar observations?
What if N > 1, i.e., multiple samples?

What is the minimum P.?
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