ELEG 5633 Detection and Estimation Detection Theory I

Jingxian Wu

Department of Electrical Engineering University of Arkansas

February 9, 2017

Detection Theory

- Binary Bayesian hypothesis test
 - Likelihood Ratio Test
 - Minimum probability of error
 - MAP: maximum a posteriori
 - ML: maximum likelihood
- Neyman-Pearson test
 - Receiving Operating Characteristics (ROC) curves
- ▶ *M*-ary hypothesis testing
- Composite hypothesis testing

A Binary Detection Example

Modulated Signal

Another Binary Detection Example

Early seizure detection triggers an intervention. k different channels: $x_i[n], i = 1, 2, ..., k$.

$$H_0$$
: 'no seisure'
 H_1 : 'seisure'
 $\hat{H}(\cdot)$: $\mathbb{R}^k \to \{H_0, H_1\}$

Hypothesis Test

Each possible scenario is a hypothesis.

- M hypothesis, $M \ge 2$: $\{H_0, H_1, \ldots, H_{M-1}\}$ Observed data: $x = [x_1, x_2, \ldots, x_k]^T$
 - scalar case: k = 1

Hypothesis Test Procedure

▶ Based on observation x, get an estimat of $\hat{H} \in \{H_0, H_1, \dots, H_{M-1}\}$

$$\hat{H}(\cdot): \quad \mathbb{R}^k \to \{H_0, H_1, \dots, H_{M-1}\}$$
(1)

Hypothesis Test: Classifications

Random hypothesis test

- *H* is a random variable, taking one of $\{H_0, H_1, \ldots, H_{M-1}\}$
- A priori probabilities: $\pi_m := \mathbb{P}[H = H_m]$
- Likelihood function: $X \sim p_{X|H}(x|H_i)$

Nonrandom Hypothesis test

- No proper priors about H
- Given $H = H_m$, X is still random: $X \sim p_X(x; H_m)$

Performance Criterion

- Generalized Bayesian risk
- Neyman-Pearson (NP)

Binary Random Hypothesis Testing: H_0 vs H_1

Given:

Hypothesis

- null hypothesis: H_0
- alternative hypothesis: H_1

Priors

$$\pi_0 := \mathbb{P}[H = H_0]$$
$$\pi_1 := \mathbb{P}[H = H_1]$$

Measurement model/ likelihood function

$$H_0: X \sim p_0$$
$$H_1: X \sim p_1$$

Additive Gaussian White Noise (AWGN) communication channel. A bit, 0 or 1, is sent through a noisy channel. The receiver gets the bit plus noise, and the noise is modeled as a realization of a $\mathcal{N}(0,1)$ random variable. Assume that both 0 and 1 are equally likely, i.e., $P_0 = P_1 = 1/2$. Once the receiver receives a signal x, it must decide between two hypotheses,

 $H_0: \quad X \sim \mathcal{N}(0,1)$ $H_1: \quad X \sim \mathcal{N}(1,1)$

Question: How to design the decision rule $\hat{H}(x)$?

Decision Regions

9

A decision is made by partitioning the range of X into two disjoint regions.

$$R_0 = \{x : \hat{H}(x) = H_0\}$$
$$R_1 = \{x : \hat{H}(x) = H_1\}$$

Example $x = [x_1, x_2]^T \in \mathbb{R}^2$

Question: How to design the decision regions R_0 and R_1 ?

Expected Cost Function Metric

- ► To optimize the choice of decision regions, we can specify a cost for decisions.
- ▶ Four possible outcomes in a test:

	H_0	H_1
$\hat{H} = H_0$	correct	incorrect
$\hat{H} = H_1$	incorrect	correct

- ▶ Denoted as $(i, j), i, j \in \{0, 1\}$, *i*: decision H_i ; *j*: true distribution H_j
- ▶ Assign a cost $c_{i,j}$ for each outcome $(i,j), i, j \in \{0,1\}$

Example

Cost Assignment example:

- 1) Digital communications: $c_{0,0} = 0$, $c_{0,1} = 1$, $c_{1,0} = 1$, $c_{1,1} = 0$.
- 2) Seizure detection: H_0 : 'no seizure'; H_1 : 'seisure'

$$c_{0,1} \gg c_{1,0}$$

Bayes Cost

▶ Bayes Cost: the expected cost associated with a test

$$C = \sum_{i,j=0}^{1} c_{i,j} \cdot \mathbb{P}(\text{decide } H_i, H_j \text{ is true})$$
$$= \sum_{i,j=0}^{1} c_{i,j} \pi_j \cdot \mathbb{P}(\text{decide } H_i | H_j \text{ is true})$$

Bayes Cost

▶ Express Bayes cost directly in terms of the decision regions

$$\begin{split} C &= \sum_{i,j=0}^{1} c_{i,j} \pi_{j} \mathbb{P}(\text{decide } H_{i} | H_{j} \text{ is true}) \\ &= \sum_{i,j=0}^{1} c_{i,j} \pi_{j} \mathbb{P}(X \in R_{i} | H_{j} \text{ is true}) \\ &= \sum_{i,j=0}^{1} c_{i,j} \pi_{j} \int_{R_{i}} p_{j}(x) dx \\ &= \int_{R_{0}} \left[c_{0,0} \pi_{0} p_{0}(x) + c_{0,1} \pi_{1} p_{1}(x) \right] dx + \int_{R_{1}} \left[c_{1,0} \pi_{0} p_{0}(x) + c_{1,1} \pi_{1} p_{1}(x) \right] dx \end{split}$$

Objective: design R_0 and R_1 such that the Bayes cost C is minimized.

Optimum Decision Rule: Likelihood Ratio Test

To minimize the Bayes cost, we should design the decision regions as

$$R_{0} := \{ x : c_{0,0}\pi_{0}p_{0}(x) + c_{0,1}\pi_{1}p_{1}(x) < c_{1,0}\pi_{0}p_{0}(x) + c_{1,1}\pi_{1}p_{1}(x) \}$$

$$R_{1} := \{ x : c_{0,0}\pi_{0}p_{0}(x) + c_{0,1}\pi_{1}p_{1}(x) > c_{1,0}\pi_{0}p_{0}(x) + c_{1,1}\pi_{1}p_{1}(x) \}$$

Therefore, the optimal test takes the following form:

$$\frac{p_1(x)}{p_0(x)} \stackrel{H_1}{\underset{H_0}{\gtrless}} \frac{\pi_0(c_{1,0} - c_{0,0})}{\pi_1(c_{0,1} - c_{1,1})}$$

Likelihood ratio test (LRT)

$$L(x) := \frac{p_1(x)}{p_0(x)} \overset{H_1}{\underset{H_0}{\gtrless}} \gamma, \quad \gamma := \frac{\pi_0(c_{1,0} - c_{0,0})}{\pi_1(c_{0,1} - c_{1,1})} \text{ can be precomputed}$$

Special Cases: MAP Detector

▶ $c_{ij} = 1 - \delta[i - j]$, then Bayes cost = Probability of error, i.e., P_e The likelihood ratio test reduces to

$$\frac{p_1(x)}{p_0(x)} \stackrel{H_1}{\underset{H_0}{\gtrless}} \frac{\pi_0}{\pi_1}$$
$$\pi_1 p_1(x) \stackrel{H_1}{\underset{H_0}{\gtrless}} \pi_0 p_0(x)$$
$$\mathbb{P}[H = H_1|x] \stackrel{H_1}{\underset{H_0}{\gtrless}} \mathbb{P}[H = H_0|x]$$

This is called Max a Posteriori (MAP) Detector

Special Cases: ML Detector

• If $\pi_0 = \pi_1$, $c_{ij} = 1 - \delta[i - j]$, LRT reduces to

$$\frac{p_1(x)}{p_0(x)} \stackrel{H_1}{\underset{H_0}{\gtrless}} 1$$
$$p_1(x) \stackrel{H_1}{\underset{H_0}{\overset{H_1}{\gtrless}}} p_0(x)$$

This is called Maximum Likelihood (ML) Detector

Properties of LRT

- L(x) is a sufficient statistic.
 It summarizes all relevant information in the observations.
- \blacktriangleright Any one-to-one transformation on L is a sufficient statistic. $g(\cdot):$ an invertible function

$$l(x) := g(L(x))$$

If $g(\cdot)$ is monotonically increasing

$$l(x) \underset{H_0}{\overset{H_1}{\gtrless}} g(\gamma)$$

Eg: $g(x) = \ln x$

LRT indicates decision regions

$$R_0 = \{x : \hat{H}(x) = H_0\} = \{x : L(x) < \gamma\}$$

$$R_1 = \{x : \hat{H}(x) = H_1\} = \{x : L(x) > \gamma\}$$

Additive Gaussian White Noise (AWGN) communication channel. A bit, 0 or 1, is sent through a noisy channel. The receiver gets the bit plus noise, and the noise is modeled as a realization of a $\mathcal{N}(0,1)$ random variable. Assume that both 0 and 1 are equally likely, i.e., $\pi_0 = \pi_1 = 1/2$. Let $c_{i,j} = 1$ if $i \neq j$; $c_{i,j} = 0$ if i = j. What is the optimal decision rule to minimize the expected cost?

 $H_0: \quad X \sim \mathcal{N}(0,1)$ $H_1: \quad X \sim \mathcal{N}(1,1)$

Additive Gaussian White Noise (AWGN) communication channel. Two messages $m = \{0, 1\}$ with probabilities $\pi_0 = \pi_1$. Given m, the received signal is a $N \times 1$ random vector

$$X = s_m + W$$

where $W \sim \mathcal{N}(0, \sigma^2 I_{N \times N})$. $\{s_0, s_1\}$ are known to the receiver. Design an optimal detector w.r.t P_e criterion.

Neyman-Pearson Hypothesis Testing

Two types of errors

	H_0	H_1	
$\hat{H} = H_0$	correct	Miss Detection	
$\hat{H} = H_1$	False Alarm	correct	

Type I:
$$P_{\mathsf{FA}} = \mathbb{P}[\hat{H} = H_1|H_0] = \int_{R_1} p_0(x)dx$$

Type II: $P_{\mathsf{MD}} = \mathbb{P}[\hat{H} = H_0|H_1] = \int_{R_0} p_1(x)dx$

Note: $P_{\text{MD}} = 1 - P_{\text{D}}$, where $P_{\text{D}} = \int_{R_1} p_1(x) dx$.

Neyman-Pearson Hypothesis Testing

 Nyeman-Pearson Design Criterion: Minimizes one type of error subject to a constraint on the other type of error.

 $\begin{array}{ll} \mbox{minimize} & P_{\rm MD} \\ \mbox{subject to} & P_{\rm FA} \leq \alpha \end{array}$

Such design does not require prior probabilities nor cost assignments.

Neyman-Pearson Theorem

Theorem

To maximize $P_{\rm D}$ with a given $P_{\rm FA} \leq \alpha$, decide H_1 if

$$L(x) := \frac{p(x|H_1)}{p(x|H_0)} \ge \lambda$$

where λ is found from

$$P_{FA} = \int_{x:L(x) > \lambda} p(x|H_0) dx = \alpha$$

Assume the scalar observation X is generated according to

$$\begin{split} H_0 : & X \sim \mathcal{N}(0, \sigma_0^2) \\ H_1 : & X \sim \mathcal{N}(0, \sigma_1^2), \quad \sigma_1^2 > \sigma_0^2 \end{split}$$

what is the NP test if we want to have $P_{\rm FA} \leq 10^{-3} ?$

• Note:
$$Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) dy$$

▶ in Matlab, y = Q(x) is qfunc(x), and $x = Q^{-1}(y)$ is qfuncinv(y)

Given N observations, X_i , i = 1, 2, ..., N, which are i.i.d and, depending on the hypothesis, generated according to

$$\begin{aligned} H_0 : & X_i \sim \mathcal{N}(0, \sigma_0^2) \\ H_1 : & X_i \sim \mathcal{N}(0, \sigma_1^2), \quad \sigma_1^2 > \sigma_0^2 \end{aligned}$$

What is the NP test for N = 20 and $P_{\text{FA}} = 0.01$?

Chi-squared distribution:

• if
$$X_i \sim \mathcal{N}(0,1)$$
, then $Y := \sum_{i=1}^k X_i^2 \sim \chi^2(k)$

• PDF:
$$p_Y(y;k) = \frac{1}{2\Gamma(\frac{k}{2})} \left(\frac{y}{2}\right)^{\frac{k}{2}-1} e^{-\frac{y}{2}}, x > 0$$

- $\Pr(Y > \tau) = \Gamma\left(\frac{\tau}{2}, \frac{k}{2}\right)$, where $\Gamma(x, a) = \frac{1}{\Gamma(a)} \int_x^{\infty} t^{a-1} e^{-t} dt$ is the upper incomplete Gamma function.
- In Matlab, y = Γ(x, a) is gammainc(x, a, 'upper'). x = Γ⁻¹(y, a) is gammaincinv(y, a, 'upper')
- example: $\tau = 2 \times$ gammaincinv(0.01, 20/2, 'upper') = 37.57

Given N observations, $X_i, i = 1, 2, ..., N$, which are i.i.d and, depending on the hypothesis, generated according to

$$H_0: X_i = W_i$$
$$H_1: X_i = \mu + W_i$$

where $W_i \sim \mathcal{N}(0, \sigma^2)$.

What is the NP test if we want to have $P_{\text{FA}} \leq 10^{-3}$?

Receiver Operating Characteristics (ROC) of the LRT

ROC: plot P_{D} versus P_{FA} ; summarizes the detection performance of NP-test. • LRT: $L(x) := \frac{p(x|H_1)}{p(x|H_0)} > \gamma$

$$\begin{split} P_{\mathsf{D}}(\gamma) &= \int_{x:L(x) > \gamma} p(x|H_1) dx \\ P_{\mathsf{FA}}(\gamma) &= \int_{x:L(x) > \gamma} p(x|H_0) dx \end{split}$$

$$\blacktriangleright \ \gamma = 0: \ P_{\mathsf{D}} = P_{\mathsf{FA}} = 1$$

$$\blacktriangleright \ \gamma = +\infty: \ P_{\mathsf{D}} = P_{\mathsf{FA}} = 0$$

 \blacktriangleright As γ increases, both $P_{\rm D}, P_{\rm FA}$ decrease

TP: true positive; FP: false positive; TN: true negative; FN: false negative

Properties of ROC

- ► The ROC is a nondecreasing function.
- The ROC is above the line $P_D = P_{FA}$.
- ► The ROC is concave.

$M\mbox{-}{\rm ary}$ Hypothesis Testing

- ▶ Now, we wish to decide among M hypotheses $\{H_0, H_1 \dots, H_{M-1}\}$.
- ► Focus on the Bayesian test.

Priors: π_0 , π_1 , ..., π_{M-1} . Likelihood: $p_{X|H_i}(x|H_i)$, denoted as $p_i(x)$.

The Bayes cost

$$C = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} c_{ij} \pi_j \cdot \mathbb{P}(\text{decide } H_i | H_j \text{ is true})$$

= $\sum_{i=0}^{M-1} \int_{R_i} \sum_{j=0}^{M-1} c_{ij} \pi_j p_j(x) dx$
= $\sum_{i=0}^{M-1} \int_{R_i} h_i(x) dx$

Define

$$h_i(x) := \sum_{j=0}^{M-1} c_{ij} \pi_j p_j(x)$$

► To minimize the Bayes cost, we let

$$R_i = \{x : h_i(x) < h_j(x), \forall j \neq i\}$$

Equivalently, for a given x, we pick the hypothesis corresponding to the smallest $C_i(x)$

$$\hat{H}(x) = \operatorname*{argmin}_{i \in \{0,1,\dots,M-1\}} h_i(x)$$

Special Cases: MAP detector

▶ $c_{ij} = 1 - \delta[i - j]$, then Bayes cost = Probability of error, i.e., P_e

$$h_i(x) = \sum_{j=0}^{M-1} c_{ij} \pi_j p_j(x) = \sum_{j \neq i} \pi_j p_j(x)$$
$$= \sum_{j=0}^{M-1} \pi_j p_j(x) - \pi_i p_i(x)$$

$$\hat{H}(x) = \operatorname*{argmin}_{H_i \in \{H_0, H_1, \dots, H_{M-1}\}} h_i(x)$$
$$= \operatorname*{argmax}_{H_i \in \{H_0, H_1, \dots, H_{M-1}\}} \pi_i p_i(x)$$

▶ Max A Posteriori (MAP) Detector for *M*-ary case $P(H_i|x) = \frac{\pi_i p_i(x)}{p(x)}$

Special Cases: ML detector

• If $\pi_0 = \ldots = \pi_{M-1} = \frac{1}{M}$, $c_{ij} = 1 - \delta[i - j]$, MAP reduces to

$$\hat{H}(x) = \operatorname*{argmax}_{H_i \in \{H_0, H_1, \dots, H_{M-1}\}} \pi_i p_i(x)$$
$$= \operatorname*{argmax}_{H_i \in \{H_0, H_1, \dots, H_{M-1}\}} p_i(x)$$

▶ Maximum Likelihood (ML) Detector for *M*-ary case.

Assume that we have three hypotheses

$$\begin{aligned} H_0 : & X_i = -s + W_i, \quad i = 1, \dots, N \\ H_1 : & X_i = W_i, \quad i = 1, \dots, N \\ H_2 : & X_i = s + W_i, \quad i = 1, \dots, N \end{aligned}$$

where W_i are i.i.d $\mathcal{N}(0,1)$, s is a positive constant. What is the optimal decision rule to minimize P_e if $\pi_0 = \pi_1 = \pi_2 = 1/3$?

What if N = 1, i.e., a scalar observations?

What if N > 1, i.e., multiple samples?

What is the minimum P_e ?