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Detection Theory

I Binary Bayesian hypothesis test
I Likelihood Ratio Test
I Minimum probability of error
I MAP: maximum a posteriori
I ML: maximum likelihood

I Neyman-Pearson test
I Receiving Operating Characteristics (ROC) curves

I M -ary hypothesis testing

I Composite hypothesis testing
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A Binary Detection Example

Source Encoder Channel Decoder Destination

010001000100

0 : s0(t) = sin(!0t)

1 : s1(t) = sin(!1t)

x(t) =

⇢
s0(t) + n(t) if ‘0’ sent
s1(t) + n(t) if ‘1’ sent

H0 : ‘0’ is sent

H1 : ‘1’ is sent

Ĥ(x) = H0? H1?
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Another Binary Detection Example

Early seizure detection triggers an intervention.
k different channels: xi[n], i = 1, 2, . . . , k.

H0 : ‘no seisure’

H1 : ‘seisure’

Ĥ(·) : Rk → {H0, H1}
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Hypothesis Test

Each possible scenario is a hypothesis.

I M hypothesis, M ≥ 2: {H0, H1, . . . ,HM−1}
Observed data: x = [x1, x2, . . . , xk]

T

I scalar case: k = 1

Hypothesis Test Procedure

I Based on observation x, get an estimat of Ĥ ∈ {H0, H1, . . . ,HM−1}

Ĥ(·) : Rk → {H0, H1, . . . ,HM−1} (1)
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Hypothesis Test: Classifications

Random hypothesis test

I H is a random variable, taking one of {H0, H1, . . . ,HM−1}
I A priori probabilities: πm := P[H = Hm]

I Likelihood function: X ∼ pX|H(x|Hi)

Nonrandom Hypothesis test

I No proper priors about H

I Given H = Hm, X is still random: X ∼ pX(x;Hm)

Performance Criterion

I Generalized Bayesian risk

I Neyman-Pearson (NP)
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Binary Random Hypothesis Testing: H0 vs H1

Given:

I Hypothesis

null hypothesis: H0

alternative hypothesis: H1

I Priors

π0 := P[H = H0]

π1 := P[H = H1]

I Measurement model/ likelihood function

H0 : X ∼ p0
H1 : X ∼ p1
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Example
Additive Gaussian White Noise (AWGN) communication channel. A bit, 0 or 1, is
sent through a noisy channel. The receiver gets the bit plus noise, and the noise is
modeled as a realization of a N (0, 1) random variable. Assume that both 0 and 1
are equally likely, i.e., P0 = P1 = 1/2. Once the receiver receives a signal x, it
must decide between two hypotheses,

H0 : X ∼ N (0, 1)

H1 : X ∼ N (1, 1)

Question: How to design the decision rule Ĥ(x)?
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Decision Regions

Ĥ(x) = H0? H1?x Decision 
Rule

A decision is made by partitioning the
range of X into two disjoint regions.

R0 = {x : Ĥ(x) = H0}
R1 = {x : Ĥ(x) = H1}

Example
x = [x1, x2]

T ∈ R2

R1

R1

R0

x2

x1

Question: How to design the decision regions R0 and R1?
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Expected Cost Function Metric

I To optimize the choice of decision regions, we can specify a cost for decisions.

I Four possible outcomes in a test:

H0 H1

Ĥ = H0 correct incorrect

Ĥ = H1 incorrect correct

I Denoted as (i, j), i, j ∈ {0, 1}, i: decision Hi; j: true distribution Hj

I Assign a cost ci,j for each outcome (i, j), i, j ∈ {0, 1}

Example
Cost Assignment example:
1) Digital communications: c0,0 = 0, c0,1 = 1, c1,0 = 1, c1,1 = 0.
2) Seizure detection: H0 : ‘no seizure’; H1 : ’seisure’

c0,1 � c1,0
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Bayes Cost

I Bayes Cost: the expected cost associated with a test

C =

1∑

i,j=0

ci,j · P(decide Hi, Hj is true)

=

1∑

i,j=0

ci,jπj · P(decide Hi|Hj is true)
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Bayes Cost

I Express Bayes cost directly in terms of the decision regions

C =

1∑

i,j=0

ci,jπjP(decide Hi|Hj is true)

=

1∑

i,j=0

ci,jπjP(X ∈ Ri|Hj is true)

=

1∑

i,j=0

ci,jπj

∫

Ri

pj(x)dx

=

∫

R0

[c0,0π0p0(x) + c0,1π1p1(x)] dx+

∫

R1

[c1,0π0p0(x) + c1,1π1p1(x)] dx

Objective: design R0 and R1 such that the Bayes cost C is minimized.
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Optimum Decision Rule: Likelihood Ratio Test

To minimize the Bayes cost, we should design the decision regions as

R0 := {x : c0,0π0p0(x) + c0,1π1p1(x) < c1,0π0p0(x) + c1,1π1p1(x)}
R1 := {x : c0,0π0p0(x) + c0,1π1p1(x) > c1,0π0p0(x) + c1,1π1p1(x)}

Therefore, the optimal test takes the following form:

p1(x)

p0(x)

H1
≷
H0

π0(c1,0 − c0,0)
π1(c0,1 − c1,1)
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Likelihood ratio test (LRT)

L(x) :=
p1(x)

p0(x)

H1
≷
H0

γ, γ :=
π0(c1,0 − c0,0)
π1(c0,1 − c1,1)

can be precomputed

Ĥx L(·) L
H1
?
H0

�
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Special Cases: MAP Detector

I cij = 1− δ[i− j], then Bayes cost = Probability of error, i.e., Pe
The likelihood ratio test reduces to

p1(x)

p0(x)

H1
≷
H0

π0
π1

π1p1(x)
H1
≷
H0

π0p0(x)

P[H = H1|x]
H1
≷
H0

P[H = H0|x]

This is called Max a Posteriori (MAP) Detector
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Special Cases: ML Detector

I If π0 = π1, cij = 1− δ[i− j], LRT reduces to

p1(x)

p0(x)

H1
≷
H0

1

p1(x)
H1
≷
H0

p0(x)

This is called Maximum Likelihood (ML) Detector
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Properties of LRT

I L(x) is a sufficient statistic.
It summarizes all relevant information in the observations.

I Any one-to-one transformation on L is a sufficient statistic.
g(·): an invertible function

l(x) := g(L(x))

If g(·) is monotonically increasing

l(x)
H1
≷
H0

g(γ)

Eg: g(x) = lnx

I LRT indicates decision regions

R0 = {x : Ĥ(x) = H0} = {x : L(x) < γ}
R1 = {x : Ĥ(x) = H1} = {x : L(x) > γ}

17



Example
Additive Gaussian White Noise (AWGN) communication channel. A bit, 0 or 1, is
sent through a noisy channel. The receiver gets the bit plus noise, and the noise is
modeled as a realization of a N (0, 1) random variable. Assume that both 0 and 1
are equally likely, i.e., π0 = π1 = 1/2. Let ci,j = 1 if i 6= j; ci,j = 0 if i = j.
What is the optimal decision rule to minimize the expected cost?

H0 : X ∼ N (0, 1)

H1 : X ∼ N (1, 1)

0 1x
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Example
Additive Gaussian White Noise (AWGN) communication channel. Two messages
m = {0, 1} with probabilities π0 = π1. Given m, the received signal is a N × 1
random vector

X = sm +W

where W ∼ N (0, σ2IN×N ). {s0, s1} are known to the receiver.
Design an optimal detector w.r.t Pe criterion.
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Neyman-Pearson Hypothesis Testing

I Two types of errors

H0 H1

Ĥ = H0 correct Miss Detection

Ĥ = H1 False Alarm correct

Type I: PFA = P[Ĥ = H1|H0] =

∫

R1

p0(x)dx

Type II: PMD = P[Ĥ = H0|H1] =

∫

R0

p1(x)dx

Note: PMD = 1− PD, where PD =
∫
R1
p1(x)dx.
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Neyman-Pearson Hypothesis Testing

I Nyeman-Pearson Design Criterion:
Minimizes one type of error subject to a constraint on the other type of error.

minimize PMD

subject to PFA ≤ α

Such design does not require prior probabilities nor cost assignments.
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Neyman-Pearson Theorem

Theorem
To maximize PD with a given PFA ≤ α, decide H1 if

L(x) :=
p(x|H1)

p(x|H0)
≥ λ

where λ is found from

PFA =

∫

x:L(x)>λ

p(x|H0)dx = α
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Example
Assume the scalar observation X is generated according to

H0 :X ∼ N (0, σ2
0)

H1 :X ∼ N (0, σ2
1), σ2

1 > σ2
0

what is the NP test if we want to have PFA ≤ 10−3?

I Note: Q(x) =
∫∞
x

1√
2π

exp
(
−y22

)
dy

I in Matlab, y = Q(x) is qfunc(x), and x = Q−1(y) is qfuncinv(y)
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Example
Given N observations, Xi, i = 1, 2, . . . , N , which are i.i.d and, depending on the
hypothesis, generated according to

H0 :Xi ∼ N (0, σ2
0)

H1 :Xi ∼ N (0, σ2
1), σ2

1 > σ2
0

What is the NP test for N = 20 and PFA = 0.01?

I Chi-squared distribution:
I if Xi ∼ N (0, 1), then Y :=

∑k
i=1 X

2
i ∼ χ2(k)

I PDF: pY (y; k) = 1

2Γ( k
2 )

(
y
2

) k
2
−1
e−

y
2 , x > 0

I Pr(Y > τ) = Γ
(
τ
2
, k

2

)
, where Γ(x, a) = 1

Γ(a)

∫∞
x
ta−1e−tdt is the upper

incomplete Gamma function.
I in Matlab, y = Γ(x, a) is gammainc(x, a, ’upper’). x = Γ−1(y, a) is

gammaincinv(y, a, ’upper’)
I example: τ = 2× gammaincinv(0.01, 20/2, ’upper’) = 37.57

24



Example
Given N observations, Xi, i = 1, 2, . . . , N , which are i.i.d and, depending on the
hypothesis, generated according to

H0 :Xi =Wi

H1 :Xi = µ+Wi

where Wi ∼ N (0, σ2).

What is the NP test if we want to have PFA ≤ 10−3?
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Receiver Operating Characteristics (ROC) of the LRT

ROC: plot PD versus PFA; summarizes the detection performance of NP-test.

I LRT: L(x) := p(x|H1)
p(x|H0)

> γ

PD(γ) =

∫

x:L(x)>γ

p(x|H1)dx

PFA(γ) =

∫

x:L(x)>γ

p(x|H0)dx

I γ = 0: PD = PFA = 1

I γ = +∞: PD = PFA = 0

I As γ increases, both PD, PFA decrease

26



TP: true positive; FP: false positive; TN: true negative; FN: false negative
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Properties of ROC

I The ROC is a nondecreasing function.

I The ROC is above the line PD = PFA.

I The ROC is concave.
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M -ary Hypothesis Testing

I Now, we wish to decide among M hypotheses {H0, H1 . . . , HM−1}.
I Focus on the Bayesian test.

Priors: π0, π1, . . . , πM−1.
Likelihood: pX|Hi

(x|Hi), denoted as pi(x).
I The Bayes cost

C =

M−1∑

i=0

M−1∑

j=0

cijπj · P(decide Hi|Hj is true)

=

M−1∑

i=0

∫

Ri

M−1∑

j=0

cijπjpj(x)dx

=

M−1∑

i=0

∫

Ri

hi(x)dx

I Define

hi(x) :=

M−1∑

j=0

cijπjpj(x)
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I To minimize the Bayes cost, we let

Ri = {x : hi(x) < hj(x),∀j 6= i}

I Equivalently, for a given x, we pick the hypothesis corresponding to the
smallest Ci(x)

Ĥ(x) = argmin
i∈{0,1,...,M−1}

hi(x)
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Special Cases: MAP detector

I cij = 1− δ[i− j], then Bayes cost = Probability of error, i.e., Pe

hi(x) =

M−1∑

j=0

cijπjpj(x) =
∑

j 6=i

πjpj(x)

=

M−1∑

j=0

πjpj(x)− πipi(x)

Ĥ(x) = argmin
Hi∈{H0,H1,...,HM−1}

hi(x)

= argmax
Hi∈{H0,H1,...,HM−1}

πipi(x)

I Max A Posteriori (MAP) Detector for M -ary case P (Hi|x) = πipi(x)
p(x)
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Special Cases: ML detector

I If π0 = . . . = πM−1 = 1
M , cij = 1− δ[i− j], MAP reduces to

Ĥ(x) = argmax
Hi∈{H0,H1,...,HM−1}

πipi(x)

= argmax
Hi∈{H0,H1,...,HM−1}

pi(x)

I Maximum Likelihood (ML) Detector for M -ary case.
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Example

Assume that we have three hypotheses

H0 :Xi = −s+Wi, i = 1, . . . , N

H1 :Xi =Wi, i = 1, . . . , N

H2 :Xi = s+Wi, i = 1, . . . , N

where Wi are i.i.d N (0, 1), s is a positive constant.
What is the optimal decision rule to minimize Pe if π0 = π1 = π2 = 1/3?

What if N = 1, i.e., a scalar observations?

What if N > 1, i.e., multiple samples?

What is the minimum Pe?
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