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Review of Linear Algebra

» Linear Vector Space

» Bases and Representations

» Orthogonal Projections

» Singular Value Decomposition and Eigen-decomposition



Definition
A linear vector space X is a collection of elements (called vectors) satisfying the

following properties:
addition: Vz,y,z € X,

>»r+ye X

> rty=y+w

> (zty)tz=z+(y+2)

» 30 X, suchthatz +0 =2z

> Ve e X, I—z € X such that z + (—2) =0
multiplication: Vx,y € X and a,b € R,

>»a-zeX

»a-(b-z)=(a-b) x

> (a+b) - z=a-z+b-x

»a-(x+y)=a-xz+a-y

»l-z=2, 0-z=0(0,1€R)



Example
Verify that the d-dimensional Euclidean space R? is a linear vector space



Example
The space of finite energy signals/functions supported on the interval [0, T

Ly ([0,T)) := {m(t) : /OT 2 (t)dt < +oo}

Verify that Ly([0,T7]) is a linear vector space.



More examples of linear vector space

» The space of finite energy sequences

+oo
l5(Z) = {x[n}; > a?n] < —i—oo}

n=—oo

» Example: [0.5"]5%¢ € €2(Z), [2"]5%0 ¢ L2(Z).

» The space of random variables with finite variances
Ly(Q) == {X : E[X?] < +o0}

» Example: X ~N(0,1), X € L2(Q).



Definition
A subset M C X is subspace if z,y € M = ax + by € M, V scalars a,b € R.
» M is a subspace = 0 € M



Definition
An inner product is a mapping from X x X to R. The inner product between any
x,y € X is denoted by (x,y) and it satisfies the following properties for all
x,Y,2 € X :
> (z,y) = (y,z)
> (ax,y) = alx,y), V scalar a
(z+y, > (z,2) + (y, 2)
(z,
(z,

x) >
>70<ﬁ>z—0

v v.yYy



Definition
A space X equipped with an inner product is called an inner product space.

Definition

An inner product space that contains all its limits is called a Hilbert Space,
denoted by H; i.e., if x1,xs,... are in H and lim,, ., z,, exists, then the limit is
also in H.



Example
» Let X =R". Then (z,y) :=2Ty=>" zy.
> Let X = (5(Z). Then (z,y) =57 __ x[n]y[n]

> Let X = Ly([0,T]). Then (z,y) : }T (t)y(t)dt.

» Let X = Lo(Q). Then (x,y) := _[ Y].
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Definition
The inner product induces a norm defined as

]l := v/ (z, z)
Cauchy-Schwarz Inequality
[z, 9)| < llzlllyll
» with "=" iff x = ay, Va € R
> (z,y) = ||z||||y]| cos(6) where 8 = arccos (niﬂ’ﬁ@u)
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A Geometric Interpretation

|A| cos@

The norm measures the length/size of x

0: the angle between two vectors.

[{x, )| = ||z||||lyll iff z and y are “parallel”; i.e., = 0,180°

x L y: Two vectors z, y are orthogonal if (z,y) =0; i.e., § = +/ —90°.

v v.vyYy
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Example
Let X = R?, then z = { (1) } and y = [ (1) } are orthogonal.

Example
Let X = R2, o = [ 1 } and y = [

vectors.

(2) ] Find the angle 6 between the two
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Bases and Representations

Definition

A collection of vectors {x1,...,x} are said to be linearly independent if none of
them can be represented as a linear combination of the others. That is, for any z;
and every set of scalar weights {0;} we have z; # >, 0;z;.

Definition

The set of all vectors that can be generated by taking linear combinations of
{z1,...,x} have the form

k
v = E 011'1
i=1

is called the span of {z1,...,z}, denoted span(x1,...,xx).
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Definition

A set of linearly independent vectors {¢;}; is a basis for H if every € H can be
represented as a unique linear combination of {¢;}. That is, every x € H can be
expressed as x = ). 0;¢; for a certain unique set of scalar weights {6;}.

» {¢;}i is a basis for H if it spans 7 and {¢; }; are linearly independent.
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Example

Let #=R? . Then [ (1) and ? } are a basis (since they are orthogonal).

Also, [ (1) ] and { } } are a basis because they are linearly independent

(although not orthogonal).

Example
Let {x;}, be a basis of R"”. Then X = [z1,---,xy,] is an n X n matrix with
rank n. Let y € R™ and assum y = 7" | 6;z;. Find the vector 6§ = [0y, ,0,,]*.
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Orthonormal Basis

Definition
An orthonormal basis (orthobasis) is a basis {¢;}; satisfying

(Bis @) = dij = { (1): z;;

Every x € H can be represented in terms of an orthobasis {¢;}; as

T = Zaid)i, a; = (v, ¢;)

17



Definition
Parsaval's Relation
Let {¢;}; be an orthonormal basis of #, and

T = Zai¢i7 ai = (x, i)

T Q; = <mv¢i>
y < b = (y, ¢i)

(z,y) = Zaibi
ol = Y

» An element x (function, random variable, vector) in a linear vector space can
be equivalently represented as a vector [a1, - ,a,] € R™ or {a[n]},, € l2(7Z)
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Gram-Schmidt Orthogonalization

Any basis can be converted into an orthonormal basis using Gram-Schmidt

Orthogonalization. Let {v;} be a basis for a vector space X’. An orthobasis {e;}
for X can be constructed as follows.

Uy = V13 el :Ul/”UlH

Ug = Vg — <’l}2,€1>61; € = u2/||u2H

k—1

U 1= Vg — Z<’Uk, eiyes;  ep = up/||ugl
i=1

Vi
u)

Projy,, va

ey
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Example
Perform Gram-Schmidt orthogonalization for the following basis of R?:

NHE—Y
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Orthogonal Projections

» Let H be a Hilbert space, and M C H be a subspace. Let = € H, then
& := arg min |l — v]|
is called the projection of 2 onto M.

» 1 is the optimal approximation to x in terms of vectors in M.
» The “error” is orthogonal to the subspace M:

e=x—2

el M, ie,(e,v)=0 YveM
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Orthogonal Projections

> let {¢;};_, be an orthobasis for M, i.e., M is spanned by {¢;}7_;.

» M is an r-dimensional subspace of H. For any z € H, the projection of x
onto M is given by

r

y=> (¢i2)0;

i=1
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Example

Let H = R2. Consider the canonical coordinate system ¢, = [ (1) ] and

0o = { (1) } Consider the subspace spanned by ¢;. The projection of any

x = [z1,72]7 € Ry onto this subspace is

Pz = (z,

[ 1

oplol=17]

The projection operator P; is just a matrix and it is given by

P = ¢1¢] =

1/v2

the span of ¢; in this case?

1]

0

o= o[ 4

')

], what is the projection operator onto

O =

(1o)=|
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Projection Matrix

» More generally suppose we are considering R™ and we have an orthobasis
{¢i}i_, for some r-dimensional, r < n, subspace M of R"™. Then the
projection matrix is given by

Pu=)Y_ ¢ig] = 20"
i=1

where ® = [¢1,...,¢,], @ matrix whose columns are the basis vectors.

» Moreover, if {¢;}i_, is a basis for M, but not necessarily orthonormal, then

Py = ®(070) a7
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Singular Value Decomposition (SVD)
A'is an m X n matrix with entries from a field (e.g., R or C). Then there exists a
factorization of the form A = UDV™:

> U =[uy...uUp]is m x m with orthonormal columns, i.e., U*U = I,,,

» V =[v1...v,] is n X n with orthonormal columns, i.e., V*V = I,

» D is m X n and has the form

cp 0 0 O 0
0 oo 0 O 0
0 0 0
0 0 on O
» The values 01, ...,0,, are called the singular values of A.

» The factorization is called the singular value decomposition (SVD).

» Because of the orthonormality of the columns of U and V' we have

A’Ui = O;Ug, A*Ul = 0;V;, izl,...,m
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Eigenvalue Decomposition (EVD)

Letting the matrix A be square, the non-zero vector v is said to be an eigenvector
of A if it satisfies

Av =X

> \: scalar termed the eigenvalue associated with v.

Real symmetric matrices always have real eigenvalues and have an
eigendecomposition of the form A = UDU*,

» columns of U the orthonormal eigenvectors of A
» D =diag(A1,...,An), and diagonal entries are the eigenvalues.
» This is just a special case of the SVD.

A symmetric pos-semidefinite matrix satisfies v7 Av > 0 for all v.
Thus, eigenvalues of symmetric pos-semidefinite matrices are non-negative.
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SVD and EVD

» A is an m X n matrix with n > m. Then there exists a factorization of the
form A =UDV™*, where U*U = I, and V*V = [,,. Denote the singular
values as {01, - ,om}

» Define By = AA* (m x m matrix), then
B, =UDV*VD*'U* =UMNU"

where A1 = diag([A1, -+, Am]), with \; = |oy|?, fori=1,--- ,m.

» Define B, = A*A (n x n matrix), then
B, =V*D*U*UDV =V*AV

where Ay = diag([A1, -, Am, 0, -+ ,0]), with \; = |oy|?, fori=1,--- ,m.

The eigenvalues of AA* and A* A are the amplitude squred singular values of A .

27



Example

Let X be a random vector taking values in R™ and recall the definition of the
covariance matrix:

S = E[(X — u)(X - p)T]

It is easy to see that ¥"Xv > 0, and ¥ is symmetric. Therefore, every covariance
matrix has an eigendecomposition of the form ¥ = UDU™, where
D =diag(A1,...,Ap) and A\; > 0fori=1,...,n.
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Example
Perform eigenvalue decomposition of the matrix

(1]
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