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Review of Linear Algebra

I Linear Vector Space

I Bases and Representations

I Orthogonal Projections

I Singular Value Decomposition and Eigen-decomposition
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Definition
A linear vector space X is a collection of elements (called vectors) satisfying the
following properties:
addition: ∀x, y, z ∈ X ,

I x+ y ∈ X
I x+ y = y + x

I (x+ y) + z = x+ (y + z)

I ∃0 ∈ X , such that x+ 0 = x

I ∀x ∈ X , ∃ − x ∈ X such that x+ (−x) = 0

multiplication: ∀x, y ∈ X and a, b ∈ R,

I a · x ∈ X
I a · (b · x) = (a · b) · x
I (a+ b) · x = a · x+ b · x
I a · (x+ y) = a · x+ a · y
I 1 · x = x, 0 · x = 0 (0, 1 ∈ R)
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Example
Verify that the d-dimensional Euclidean space Rd is a linear vector space
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Example
The space of finite energy signals/functions supported on the interval [0, T ]

L2([0, T ]) :=

{
x(t) :

∫ T

0

x2(t)dt < +∞

}

Verify that L2([0, T ]) is a linear vector space.
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More examples of linear vector space

I The space of finite energy sequences

`2(Z) :=

{
x[n] :

+∞∑
n=−∞

x2[n] < +∞

}

I Example: [0.5n]∞n=0 ∈ `2(Z), [2n]∞n=0 /∈ `2(Z).

I The space of random variables with finite variances

L2(Ω) :=
{
X : E[X2] < +∞

}
I Example: X ∼ N (0, 1), X ∈ L2(Ω).
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Definition
A subset M⊂ X is subspace if x, y ∈M⇒ ax+ by ∈M, ∀ scalars a, b ∈ R.

I M is a subspace ⇒ 0 ∈M
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Definition
An inner product is a mapping from X × X to R. The inner product between any
x, y ∈ X is denoted by 〈x, y〉 and it satisfies the following properties for all
x, y, z ∈ X :

I 〈x, y〉 = 〈y, x〉
I 〈ax, y〉 = a〈x, y〉, ∀ scalar a

I 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
I 〈x, x〉 ≥ 0

I 〈x, x〉 = 0⇔ x = 0
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Definition
A space X equipped with an inner product is called an inner product space.

Definition
An inner product space that contains all its limits is called a Hilbert Space,
denoted by H; i.e., if x1, x2, . . . are in H and limn→∞ xn exists, then the limit is
also in H.
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Example

I Let X = Rn. Then 〈x, y〉 := xT y =
∑n

i=1 xiyi.

I Let X = `2(Z). Then 〈x, y〉 :=
∑∞

n=−∞ x[n]y[n]

I Let X = L2([0, T ]). Then 〈x, y〉 :=
∫ T

0
x(t)y(t)dt.

I Let X = L2(Ω). Then 〈x, y〉 := E[XY ].
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Definition
The inner product induces a norm defined as

‖x‖ :=
√
〈x, x〉

.

Cauchy-Schwarz Inequality
|〈x, y〉| ≤ ‖x‖‖y‖

I with “=” iff x = ay, ∀a ∈ R
I 〈x, y〉 = ‖x‖‖y‖ cos(θ) where θ = arccos

(
〈x,y〉
‖x‖‖y‖

)
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A Geometric Interpretation

I The norm measures the length/size of x

I θ: the angle between two vectors.

I |〈x, y〉| = ‖x‖‖y‖ iff x and y are “parallel”; i.e., θ = 0, 180◦

I x ⊥ y: Two vectors x, y are orthogonal if 〈x, y〉 = 0; i.e., θ = +/− 90◦.
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Example

Let X = R2, then x =

[
1
0

]
and y =

[
0
1

]
are orthogonal.

Example

Let X = R2, x =

[
1
1

]
and y =

[
2
0

]
. Find the angle θ between the two

vectors.
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Bases and Representations

Definition
A collection of vectors {x1, . . . , xk} are said to be linearly independent if none of
them can be represented as a linear combination of the others. That is, for any xi
and every set of scalar weights {θj} we have xi 6=

∑
j:j 6=i θjxj .

Definition
The set of all vectors that can be generated by taking linear combinations of
{x1, . . . , xk} have the form

v =

k∑
i=1

θixi

is called the span of {x1, . . . , xk}, denoted span(x1, . . . , xk).
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Definition
A set of linearly independent vectors {φi}i is a basis for H if every x ∈ H can be
represented as a unique linear combination of {φi}. That is, every x ∈ H can be
expressed as x =

∑
i θiφi for a certain unique set of scalar weights {θi}.

I {φi}i is a basis for H if it spans H and {φi}i are linearly independent.
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Example

Let H = R2 . Then

[
1
0

]
and

[
0
1

]
are a basis (since they are orthogonal).

Also,

[
1
0

]
and

[
1
1

]
are a basis because they are linearly independent

(although not orthogonal).

Example
Let {xi}ni=1 be a basis of Rn. Then X = [x1, · · · , xn] is an n× n matrix with
rank n. Let y ∈ Rn and assum y =

∑n
i=1 θixi. Find the vector θ = [θ1, · · · , θn]∗.
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Orthonormal Basis

Definition
An orthonormal basis (orthobasis) is a basis {φi}i satisfying

〈φi, φj〉 = δij :=

{
1, i = j
0, i 6= j

Every x ∈ H can be represented in terms of an orthobasis {φi}i as

x =
∑
i

aiφi, ai = 〈x, φi〉
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Definition
Parsaval’s Relation
Let {φi}i be an orthonormal basis of H, and

x =
∑
i

aiφi, ai = 〈x, φi〉

x←→ ai = 〈x, φi〉
y ←→ bi = 〈y, φi〉

〈x, y〉 =
∑
i

aibi

‖x‖ =
∑
i

a2i

I An element x (function, random variable, vector) in a linear vector space can
be equivalently represented as a vector [a1, · · · , an] ∈ Rn or {a[n]}n ∈ `2(Z)
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Gram-Schmidt Orthogonalization

Any basis can be converted into an orthonormal basis using Gram-Schmidt
Orthogonalization. Let {vi} be a basis for a vector space X . An orthobasis {ei}
for X can be constructed as follows.

u1 := v1; e1 = u1/‖u1‖
u2 := v2 − 〈v2, e1〉e1; e2 = u2/‖u2‖

...

uk := vk −
k−1∑
i=1

〈vk, ei〉ei; ek = uk/‖uk‖
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Example
Perform Gram-Schmidt orthogonalization for the following basis of R2:

v1 =

[
1
1

]
and v2 =

[
1
0

]
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Orthogonal Projections

I Let H be a Hilbert space, and M⊂ H be a subspace. Let x ∈ H, then

x̂ := arg min
v∈M

‖x− v‖

is called the projection of x onto M.
I x̂ is the optimal approximation to x in terms of vectors in M.
I The “error” is orthogonal to the subspace M:

e = x− x̂
e ⊥M, i.e., 〈e, v〉 = 0 ∀v ∈M
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Orthogonal Projections

I let {φi}ri=1 be an orthobasis for M, i.e., M is spanned by {φi}ri=1.

I M is an r-dimensional subspace of H. For any x ∈ H, the projection of x
onto M is given by

y =

r∑
i=1

〈φi, x〉φi
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Example

Let H = R2. Consider the canonical coordinate system φ1 =

[
1
0

]
and

φ2 =

[
0
1

]
. Consider the subspace spanned by φ1. The projection of any

x = [x1, x2]T ∈ R2 onto this subspace is

P1x = 〈x,
[

1
0

]
〉
[

1
0

]
=

[
x1
0

]
The projection operator P1 is just a matrix and it is given by

P1 := φ1φ
T
1 =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]

If φ1 =

[
1/
√

2

1/
√

2

]
and φ2 =

[
1/
√

2

−1/
√

2

]
, what is the projection operator onto

the span of φ1 in this case?
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Projection Matrix

I More generally suppose we are considering Rn and we have an orthobasis
{φi}ri=1 for some r-dimensional, r < n, subspace M of Rn. Then the
projection matrix is given by

PM =

r∑
i=1

φiφ
T
i = ΦΦT

where Φ = [φ1, . . . , φr], a matrix whose columns are the basis vectors.

I Moreover, if {φi}ri=1 is a basis for M, but not necessarily orthonormal, then

PM = Φ(ΦT Φ)−1ΦT
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Singular Value Decomposition (SVD)

A is an m× n matrix with entries from a field (e.g., R or C). Then there exists a
factorization of the form A = UDV ∗:

I U = [u1 . . . um] is m×m with orthonormal columns, i.e., U∗U = Im
I V = [v1 . . . vn] is n× n with orthonormal columns, i.e., V ∗V = In
I D is m× n and has the form

σ1 0 0 0 . . . 0
0 σ2 0 0 . . . 0
... 0

. . . 0 . . . 0
0 . . . 0 σm 0 . . .


I The values σ1, . . . , σm are called the singular values of A.

I The factorization is called the singular value decomposition (SVD).

I Because of the orthonormality of the columns of U and V we have

Avi = σiui, A∗ui = σivi, i = 1, . . . ,m
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Eigenvalue Decomposition (EVD)

Letting the matrix A be square, the non-zero vector v is said to be an eigenvector
of A if it satisfies

Av = λv

I λ: scalar termed the eigenvalue associated with v.

Real symmetric matrices always have real eigenvalues and have an
eigendecomposition of the form A = UDU∗,

I columns of U the orthonormal eigenvectors of A

I D = diag(λ1, . . . , λn), and diagonal entries are the eigenvalues.

I This is just a special case of the SVD.

A symmetric pos-semidefinite matrix satisfies vTAv ≥ 0 for all v.
Thus, eigenvalues of symmetric pos-semidefinite matrices are non-negative.
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SVD and EVD

I A is an m× n matrix with n ≥ m. Then there exists a factorization of the
form A = UDV ∗, where U∗U = Im and V ∗V = In. Denote the singular
values as {σ1, · · · , σm}

I Define B1 = AA∗ (m×m matrix), then

B1 = UDV ∗V D∗U∗ = UΛ1U
∗

where Λ1 = diag([λ1, · · · , λm]), with λi = |σi|2, for i = 1, · · · ,m.

I Define B2 = A∗A (n× n matrix), then

B1 = V ∗D∗U∗UDV = V ∗Λ2V

where Λ2 = diag([λ1, · · · , λm, 0, · · · , 0]), with λi = |σi|2, for i = 1, · · · ,m.

The eigenvalues of AA∗ and A∗A are the amplitude squred singular values of A .
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Example
Let X be a random vector taking values in Rn and recall the definition of the
covariance matrix:

Σ := E[(X − µ)(X − µ)T ]

It is easy to see that vT Σv ≥ 0, and Σ is symmetric. Therefore, every covariance
matrix has an eigendecomposition of the form Σ = UDU∗, where
D = diag(λ1, . . . , λn) and λi ≥ 0 for i = 1, . . . , n.
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Example
Perform eigenvalue decomposition of the matrix

A =

[
1 2
2 1

]
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