ELEG 5633 Detection and Estimation Review of Linear Algebra

Jingxian Wu

Department of Electrical Engineering University of Arkansas

January 30, 2017

Review of Linear Algebra

- ► Linear Vector Space
- Bases and Representations
- Orthogonal Projections
- ► Singular Value Decomposition and Eigen-decomposition

A linear vector space \mathcal{X} is a collection of elements (called vectors) satisfying the following properties:

addition: $\forall x, y, z \in \mathcal{X}$,

- $\blacktriangleright \ x+y \in \mathcal{X}$
- $\blacktriangleright \ x+y=y+x$
- $\blacktriangleright (x+y) + z = x + (y+z)$
- $\blacktriangleright \ \exists 0 \in \mathcal{X} \text{, such that } x + 0 = x$
- $\blacktriangleright \ \forall x \in \mathcal{X} \text{, } \exists x \in \mathcal{X} \text{ such that } x + (-x) = 0$

multiplication: $\forall x, y \in \mathcal{X} \text{ and } a, b \in \mathbb{R}$,

- $\blacktriangleright \ a \cdot x \in \mathcal{X}$
- $\blacktriangleright \ a \cdot (b \cdot x) = (a \cdot b) \cdot x$
- $\blacktriangleright \ (a+b) \cdot x = a \cdot x + b \cdot x$
- $\blacktriangleright \ a \cdot (x+y) = a \cdot x + a \cdot y$
- $1 \cdot x = x$, $0 \cdot x = 0$ $(0, 1 \in \mathbb{R})$

Verify that the d-dimensional Euclidean space \mathbb{R}^d is a linear vector space

The space of finite energy signals/functions supported on the interval [0,T]

$$L_2([0,T]) := \left\{ x(t) : \int_0^T x^2(t) dt < +\infty \right\}$$

Verify that $L_2([0,T])$ is a linear vector space.

More examples of linear vector space

► The space of finite energy sequences

$$\ell_2(\mathbb{Z}) := \left\{ x[n] : \sum_{n=-\infty}^{+\infty} x^2[n] < +\infty \right\}$$

• Example: $[0.5^n]_{n=0}^{\infty} \in \ell_2(\mathbb{Z})$, $[2^n]_{n=0}^{\infty} \notin \ell_2(\mathbb{Z})$.

► The space of random variables with finite variances L₂(Ω) := {X : E[X²] < +∞}</p>

• Example:
$$X \sim \mathcal{N}(0, 1)$$
, $X \in L_2(\Omega)$.

A subset $\mathcal{M} \subset \mathcal{X}$ is subspace if $x, y \in \mathcal{M} \Rightarrow ax + by \in \mathcal{M}$, \forall scalars $a, b \in \mathbb{R}$.

 $\blacktriangleright \ \mathcal{M} \text{ is a subspace} \Rightarrow 0 \in \mathcal{M}$

An inner product is a mapping from $\mathcal{X} \times \mathcal{X}$ to \mathbb{R} . The inner product between any $x, y \in \mathcal{X}$ is denoted by $\langle x, y \rangle$ and it satisfies the following properties for all $x, y, z \in \mathcal{X}$:

- $\blacktriangleright \ \langle x,y\rangle = \langle y,x\rangle$
- $\blacktriangleright \ \langle ax,y\rangle = a\langle x,y\rangle \text{, }\forall \text{ scalar }a$
- $\blacktriangleright \langle x+y,z\rangle = \langle x,z\rangle + \langle y,z\rangle$
- $\blacktriangleright \ \langle x,x\rangle \geq 0$
- $\blacktriangleright \ \langle x,x\rangle=0 \Leftrightarrow x=0$

A space \mathcal{X} equipped with an inner product is called an inner product space.

Definition

An inner product space that contains all its limits is called a Hilbert Space, denoted by \mathcal{H} ; i.e., if x_1, x_2, \ldots are in \mathcal{H} and $\lim_{n \to \infty} x_n$ exists, then the limit is also in \mathcal{H} .

- Let $\mathcal{X} = \mathbb{R}^n$. Then $\langle x, y \rangle := x^T y = \sum_{i=1}^n x_i y_i$.
- \blacktriangleright Let $\mathcal{X}=\ell_2(\mathbb{Z}).$ Then $\langle x,y\rangle:=\sum_{n=-\infty}^\infty x[n]y[n]$
- Let $\mathcal{X} = L_2([0,T])$. Then $\langle x, y \rangle := \int_0^T x(t)y(t)dt$.
- Let $\mathcal{X} = L_2(\Omega)$. Then $\langle x, y \rangle := \mathbb{E}[XY]$.

The inner product induces a norm defined as

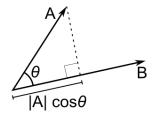
$$\|x\| := \sqrt{\langle x, x \rangle}$$

Cauchy-Schwarz Inequality

 $|\langle x,y\rangle|\leq \|x\|\|y\|$

- with "=" iff x = ay, $\forall a \in \mathbb{R}$
- $\blacktriangleright \langle x, y \rangle = \|x\| \|y\| \cos(\theta) \text{ where } \theta = \arccos\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$

A Geometric Interpretation



- The norm measures the length/size of x
- θ : the angle between two vectors.
- $|\langle x,y\rangle| = ||x|| ||y||$ iff x and y are "parallel"; i.e., $\theta = 0,180^{\circ}$
- $x \perp y$: Two vectors x, y are orthogonal if $\langle x, y \rangle = 0$; i.e., $\theta = +/-90^{\circ}$.

Example Let $\mathcal{X} = \mathbb{R}^2$, then $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are orthogonal.

Example

Let $\mathcal{X} = \mathbb{R}^2$, $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $y = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. Find the angle θ between the two vectors.

Bases and Representations

Definition

A collection of vectors $\{x_1, \ldots, x_k\}$ are said to be linearly independent if none of them can be represented as a linear combination of the others. That is, for any x_i and every set of scalar weights $\{\theta_j\}$ we have $x_i \neq \sum_{j:j\neq i} \theta_j x_j$.

Definition

The set of all vectors that can be generated by taking linear combinations of $\{x_1,\ldots,x_k\}$ have the form

$$v = \sum_{i=1}^{k} \theta_i x_i$$

is called the span of $\{x_1, \ldots, x_k\}$, denoted span (x_1, \ldots, x_k) .

A set of linearly independent vectors $\{\phi_i\}_i$ is a basis for \mathcal{H} if every $x \in \mathcal{H}$ can be represented as a unique linear combination of $\{\phi_i\}$. That is, every $x \in \mathcal{H}$ can be expressed as $x = \sum_i \theta_i \phi_i$ for a certain unique set of scalar weights $\{\theta_i\}$.

• $\{\phi_i\}_i$ is a basis for \mathcal{H} if it spans \mathcal{H} and $\{\phi_i\}_i$ are linearly independent.

Example Let $\mathcal{H} = \mathbb{R}^2$. Then $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1 \end{bmatrix}$ are a basis (since they are orthogonal). Also, $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$ are a basis because they are linearly independent (although not orthogonal).

Example

Let $\{x_i\}_{i=1}^n$ be a basis of \mathbb{R}^n . Then $X = [x_1, \cdots, x_n]$ is an $n \times n$ matrix with rank n. Let $y \in \mathbb{R}^n$ and assum $y = \sum_{i=1}^n \theta_i x_i$. Find the vector $\theta = [\theta_1, \cdots, \theta_n]^*$.

Orthonormal Basis

Definition

An orthonormal basis (orthobasis) is a basis $\{\phi_i\}_i$ satisfying

$$\langle \phi_i, \phi_j \rangle = \delta_{ij} := \left\{ \begin{array}{ll} 1, & i=j \\ 0, & i\neq j \end{array} \right.$$

Every $x \in \mathcal{H}$ can be represented in terms of an orthobasis $\{\phi_i\}_i$ as

$$x = \sum_{i} a_i \phi_i, \quad a_i = \langle x, \phi_i \rangle$$

Parsaval's Relation

Let $\{\phi_i\}_i$ be an orthonormal basis of \mathcal{H} , and

$$\begin{aligned} x &= \sum_{i} a_{i}\phi_{i}, \quad a_{i} &= \langle x, \phi_{i} \rangle \\ x &\longleftrightarrow a_{i} &= \langle x, \phi_{i} \rangle \\ y &\longleftrightarrow b_{i} &= \langle y, \phi_{i} \rangle \\ \langle x, y \rangle &= \sum_{i} a_{i}b_{i} \\ \|x\| &= \sum_{i} a_{i}^{2} \end{aligned}$$

An element x (function, random variable, vector) in a linear vector space can be equivalently represented as a vector [a₁, · · · , a_n] ∈ ℝⁿ or {a[n]}_n ∈ ℓ₂(ℤ)

Gram-Schmidt Orthogonalization

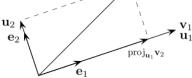
Any basis can be converted into an orthonormal basis using Gram-Schmidt Orthogonalization. Let $\{v_i\}$ be a basis for a vector space \mathcal{X} . An orthobasis $\{e_i\}$ for \mathcal{X} can be constructed as follows.

$$u_{1} := v_{1}; \quad e_{1} = u_{1} / ||u_{1}||$$

$$u_{2} := v_{2} - \langle v_{2}, e_{1} \rangle e_{1}; \quad e_{2} = u_{2} / ||u_{2}||$$

$$\vdots$$

$$u_{k} := v_{k} - \sum_{i=1}^{k-1} \langle v_{k}, e_{i} \rangle e_{i}; \quad e_{k} = u_{k} / ||u_{k}||$$



19

Perform Gram-Schmidt orthogonalization for the following basis of $\mathbb{R}^2:$

 $v_1 = \left[egin{array}{c} 1 \\ 1 \end{array}
ight]$ and $v_2 = \left[egin{array}{c} 1 \\ 0 \end{array}
ight]$

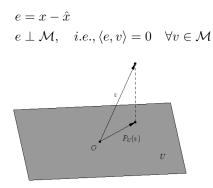
Orthogonal Projections

▶ Let \mathcal{H} be a Hilbert space, and $\mathcal{M} \subset \mathcal{H}$ be a subspace. Let $x \in \mathcal{H}$, then

$$\hat{x} := \arg\min_{v \in \mathcal{M}} \|x - v\|$$

is called the projection of x onto \mathcal{M} .

- \hat{x} is the optimal approximation to x in terms of vectors in \mathcal{M} .
- The "error" is orthogonal to the subspace \mathcal{M} :



Orthogonal Projections

- let $\{\phi_i\}_{i=1}^r$ be an orthobasis for \mathcal{M} , i.e., \mathcal{M} is spanned by $\{\phi_i\}_{i=1}^r$.
- ▶ M is an *r*-dimensional subspace of H. For any $x \in H$, the projection of x onto M is given by

$$y = \sum_{i=1}^{r} \langle \phi_i, x \rangle \phi_i$$

Let $\mathcal{H} = \mathbb{R}^2$. Consider the canonical coordinate system $\phi_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\phi_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Consider the subspace spanned by ϕ_1 . The projection of any $x = [x_1, x_2]^T \in \mathbb{R}_2$ onto this subspace is

$$P_1 x = \langle x, \begin{bmatrix} 1\\0 \end{bmatrix} \rangle \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} x_1\\0 \end{bmatrix}$$

The projection operator P_1 is just a matrix and it is given by

$$P_1 := \phi_1 \phi_1^T = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

If $\phi_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ and $\phi_2 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$, what is the projection operator onto the span of ϕ_1 in this case?

Projection Matrix

More generally suppose we are considering ℝⁿ and we have an orthobasis {φ_i}^r_{i=1} for some r-dimensional, r < n, subspace M of ℝⁿ. Then the projection matrix is given by

$$P_{\mathcal{M}} = \sum_{i=1}^{r} \phi_i \phi_i^T = \Phi \Phi^T$$

where $\Phi = [\phi_1, \dots, \phi_r]$, a matrix whose columns are the basis vectors.

 \blacktriangleright Moreover, if $\{\phi_i\}_{i=1}^r$ is a basis for $\mathcal M,$ but not necessarily orthonormal, then

$$P_{\mathcal{M}} = \Phi(\Phi^T \Phi)^{-1} \Phi^T$$

Singular Value Decomposition (SVD)

A is an $m \times n$ matrix with entries from a field (e.g., \mathbb{R} or \mathbb{C}). Then there exists a factorization of the form $A = UDV^*$:

- ▶ $U = [u_1 \dots u_m]$ is $m \times m$ with orthonormal columns, i.e., $U^*U = I_m$
- $V = [v_1 \dots v_n]$ is $n \times n$ with orthonormal columns, i.e., $V^*V = I_n$
- $\blacktriangleright \ D$ is $m \times n$ and has the form

$$\begin{bmatrix} \sigma_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & 0 & \dots & 0 \\ 0 & \dots & 0 & \sigma_m & 0 & \dots \end{bmatrix}$$

- The values $\sigma_1, \ldots, \sigma_m$ are called the singular values of A.
- ► The factorization is called the singular value decomposition (SVD).
- Because of the orthonormality of the columns of U and V we have

$$Av_i = \sigma_i u_i, \quad A^* u_i = \sigma_i v_i, \quad i = 1, \dots, m$$

Eigenvalue Decomposition (EVD)

Letting the matrix A be square, the non-zero vector v is said to be an eigenvector of A if it satisfies

$$Av = \lambda v$$

• λ : scalar termed the eigenvalue associated with v.

Real symmetric matrices always have real eigenvalues and have an eigendecomposition of the form $A = UDU^*$,

- \blacktriangleright columns of U the orthonormal eigenvectors of A
- ▶ $D = \text{diag}(\lambda_1, \dots, \lambda_n)$, and diagonal entries are the eigenvalues.
- This is just a special case of the SVD.

A symmetric pos-semidefinite matrix satisfies $v^T A v \ge 0$ for all v. Thus, eigenvalues of symmetric pos-semidefinite matrices are non-negative.

SVD and EVD

• A is an $m \times n$ matrix with $n \ge m$. Then there exists a factorization of the form $A = UDV^*$, where $U^*U = I_m$ and $V^*V = I_n$. Denote the singular values as $\{\sigma_1, \cdots, \sigma_m\}$

• Define
$$B_1 = AA^*$$
 ($m \times m$ matrix), then

$$B_1 = UDV^*VD^*U^* = U\Lambda_1U^*$$

where $\Lambda_1 = \text{diag}([\lambda_1, \cdots, \lambda_m])$, with $\lambda_i = |\sigma_i|^2$, for $i = 1, \cdots, m$.

• Define $B_2 = A^*A$ ($n \times n$ matrix), then

$$B_1 = V^* D^* U^* U D V = V^* \Lambda_2 V$$

where $\Lambda_2 = \text{diag}([\lambda_1, \cdots, \lambda_m, 0, \cdots, 0])$, with $\lambda_i = |\sigma_i|^2$, for $i = 1, \cdots, m$.

The eigenvalues of AA^* and A^*A are the amplitude squred singular values of A .

Let X be a random vector taking values in \mathbb{R}^n and recall the definition of the covariance matrix:

$$\Sigma := \mathbb{E}[(X - \mu)(X - \mu)T]$$

It is easy to see that $v^T \Sigma v \ge 0$, and Σ is symmetric. Therefore, every covariance matrix has an eigendecomposition of the form $\Sigma = UDU^*$, where $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ and $\lambda_i \ge 0$ for $i = 1, \ldots, n$.

Perform eigenvalue decomposition of the matrix

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right]$$