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Probability theory begins with three basic components:

I The set of all possible outcomes, denoted Ω.

I The collection of all sets of outcomes (events), denoted A.

I A probability measure P.

Specification of the triple (Ω,A,P) defines the probability space which models a
real-world measurement or experimental process.

Example

Ω = {all outcomes of the roll of a die}
= {1, 2, 3, 4, 5, 6}

A = {all possible sets of outcomes}
= {{1}, {2}, . . . , {1, 2}, . . . , {1, 2, . . . , 6}}

P = probability of all sets/events

Assume all six outcomes are equally probable.
What is the probability of a given ω ∈ Ω, say ω = 3?
What is the probability of the event ω ∈ {1, 2, 3}?
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Probability Measures

Probability measures must satisfy the following properties:

1. P(A) ≥ 0,∀A ∈ A.
2. P(Ω) = 1

3. if A ∩B = ∅, then P(A ∪B) = P(A) + P(B).

Show that the last condition also implies that in general P(A∪B) ≤ P(A) +P(B)
This is a useful inequality sometimes called the union bound.
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Conditional Probability

Consider two events A,B ∈ A. The (conditional) probability that A occurs given
B occurs is

P(A|B) :=
P(A ∩B)

P(B)

Example
Ω = {1, 2, 3, 4, 5, 6}, A = {1, 2}, B = {2, 3}. Now suppose you are told that B
occurs. What is the conditional probability that A occurs?
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Independence

Two events A and B are said to be independent if P(A|B) = P (A).
In other words, B provides no information about whether A has occurred.

Example
Suppose we have two dice. Then
Ω = {all pairs of outcomes of the roll of two dice}. Let A = {1st die is 1} and
B = {2nd die is 1}. P (A) =?, P (A|B) =?
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Independence

Example
Ω = {1, 2, 3, 4, 5, 6}, A = {1, 2}, B = {2, 3}. A and B are independent or not?
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Bayes Rule

P(B|A) =
P(A|B)P(B)

P(A)

I Bayes rule is a formula for the “inverse” conditional probability, P(B|A).

I It is easy to verify by recalling the definition of conditional probability.

I This inversion formula will play a central role in signal estimation problems
later in the course.

Example
Geneticists have determined that a particular genetic defect is related to a certain
disease. Many people with the disease also have this defect, but there are
disease-free people with the defect. The geneticists have found that 0.01% of the
general population has the disease and that the defect is present in 50% of these
cases. They also know that 0.1% of the population has the defect. What is the
probability that a person with the defect has the disease?
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Random Variables

I A real-valued random variable is a mapping X : Ω→ R.

I Random variables can also be vectors, e.g., a mapping X : Ω→ Rn.
I Since P specifies the probability of every subset of Ω, it also induces

probabilities on events expressed in terms of X.
I E.g., X is a real-valued scalar random variable, then {X ≥ 0} ≡ {X(ω) ≥ 0}.

Therefore, P(X ≥ 0) = P({ω : x(ω) ≥ 0}).
I More generally, for any set A we may consider the event {X ∈ A} and its

probability P(X ∈ A).

9



Example
Consider a dice gambling game. You are betting that the next roll will be greater
than 3. If the outcome ω is greater than 3 (ω = 4, 5, or 6), you win ω dollars;
otherwise, you loose ω dollars. Define a random variable that corresponds to the
amount of money that you win (positive) or lose (negative).
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Cumulative Distributions and Densities

I Cumulative distribution function (cdf) of a real-valued RV X:

FX(x) := P(X ≤ x)

I FX(x2)− FX(x1) = P(X ≤ x2)−P(X ≤ x1) = P(x1 < X ≤ x2)

I Probability density function (pdf) of a continuous random variable X:

pX(x) := lim
∆→0

FX(x+ ∆)− FX(x)

∆

if the limit exists (F is differentiable at x).
I pX(x) ≥ 0: FX(x) is a monotonic increasing function.
I If FX(x) is differentiable everywhere, then by the Fundamental Theorem of

Calculus we have

FX(x) =

∫ x

−∞
pX(x)dx

I limx→∞ FX(x) =
∫∞
−∞ pX(x)dx = 1

I P(x1 < X ≤ x2) =
∫ x2

x1
pX(x)dx, which explains the term “density”.
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Probability Mass Functions (pmf) for Discrete RVs

If X takes values in a discrete set {x1, x2, . . .} (which may be finite or infinite),
then the pmf of X is given by

P(X = xi), i = 1, 2, . . .

Example
Suppose you toss a coin n times and count the number of heads. Assume the
probability of observing a head in a single toss is p. This number is a random
variable X taking a value between 0 and n. What is the pmf of X?
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Expectation

If a random variable X has density pX(x), then the expectation of f(X), where f
is any function of X, is

E[f(X)] =

∫
f(x)pX(x)dx

If the random variable is discrete, then the expectation is

E[f(X)] =
∑
i

f(xi)P (X = xi)

Some special cases:

I mean: µ = E[X]

I variance: σ2 = E[(X − E[X])2]

I probability: P(X ∈ A) = E[1X∈A]

I characteristic function: φ(ω) := E[exp(−iωX)].
The characteristic function of X is the Fourier transform of its density.
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Pairs of Random Variables

I Cumulative distribution function (cdf) of a pair of real-valued RVs X,Y :

FXY (x, y) := P(X ≤ x, Y ≤ y)

I Joint probability density function (pdf):

pXY (x, y) :=
d2FXY (x, y)

dxdy
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Pairs of Random Variables

I Conditional pdf:

pX|Y (x|y) =
pXY (x, y)

pY (y)

I Marginal pdf:

pX(x) =

∫
pXY (x, y)dx

,

pY (y) =

∫
pXY (x, y)dy

I Expectation:

E[f(X,Y )] =

∫
f(x, y)pXY (x, y)dxdy
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Correlation, Covariance, Dependence

I Covariance: σXY := E[(X − µx)(Y − µy)] = E[XY ]− µxµy
I Correlation coefficient: ρXY := σXY

σXσY

I Conditional expectation: E[X|Y = y] =
∫
x · pX|Y (x|y)dx

Note: it is a function of y! E[X|Y ] is a random variable.

I X,Y are statistically independent if pX|Y (x|y) = pX(x), or
pXY (x, y) = pX(x)pY (y).

I Question: X,Y independent ⇔ X,Y uncorrelated?

Example
Consider two RVs X,Y , where Y = aX + b, a, b are constants. What is ρXY ?
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Random Vectors

I If X is a d-dimensional random variable, X = [X1, ..., Xd]
T , then

I mean E[X] = [µ1, µ2, . . . , µd]T .
I covariance matrix is Σ = E[(X − µ)(X − µ)T ].

Covariance matrices are always symmetric, and positive semi-definite.

I Two random vectors X, Y :
I cross-covariance matrix ΣXY = E[(X − µX)(Y − µY )T ]
I conditional expectation E[f(x)|Y = y] =

∫
f(x) · pX|Y (x|y)dx

I conditional mean E[X|Y = y] =
∫
x · pX|Y (x|y)dx

I conditional covariance ΣX|Y =y =
∫

(x− µX|Y =y)(x− µX|Y =y)T pX|Y (x|y)dx

I If Y = AX, where A is an m× d matrix, then the random vector Y has
I mean E[AX] = Aµ
I covariance E[(AX −Aµ)(AX −Aµ)T )] = AΣAT .
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Gaussian Random Variables and Random Vectors

I Gaussian (Normal) distribution:

pX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
I Shorthand: X ∼ N (µ, σ2). Standard normal distribution: N (0, 1).

I CDF for N (0, 1): Φ(x). Q(x) = 1− Φ(x).

I Multivariate Gaussian (or Normal) distribution

pX(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
I Shorthand: X ∼ N (µ,Σ). µ = E[X], Σ = E[(X − µ)(X − µ)T ].

I If Σ is a diagonal matrix, component random variables are uncorrelated.
The multivariate Gaussian density factorizes into univariate component
densities, which means that uncorrelated Gaussian random variables are also
independent.

I This is a special property for Gaussian!
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More Properties about Gaussian Random Vectors

I If X is multivariate Gaussian distributed, Y = AX, Y ∼ N (Aµ,AΣAT ).

I Each individual variate Xi of X is Gaussian distributed, with variance
σ2
i = Σii

I X,Y are joint Gaussian random vectors. Conditional pdf of X given Y = y is
still Gaussian, with

µX|Y (y) = µX + ΣXY Σ−1
Y (y − µy)

ΣX|Y (y) = ΣX − ΣXY Σ−1
Y ΣTXY

Example

Suppose that X =

[
X1

X2

]
∼ N (µ,Σ) with µ =

[
1
4

]
, Σ =

[
1 −1
−1 4

]
What

is the distribution of X1, 2X1 +X2, and X1 given X2 = 2?
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Example
Imagine we have a sensor network monitoring a manufacturing facility. The
network consists of n nodes and its function is to monitor for failures in the
system. Let X = [X1, ..., Xn]T denote the set of scalar measurements produced
by the network and suppose that it can modeled as a realization of a N (0,Σ)
random vector. Furthermore, assume that if the average of the measurements is
greater than a threshold τ , it indicates that the system fails. Then, what is the
probability of failure? What if n = 2, Σ = I, and τ = 0?
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Convergence of Sums of Independent Random Variables

Example
A data analyst wants to find out the average number of retweets for a tweet at
Twitter. Assume tweets are independent with each other. She randomly picks n
tweets, and tracks them until no one retweets them. Let x1, . . . , xn denote the
recorded number of times that a tweet has been retweeted. She then use the
average p̂ := 1

n

∑n
i=1 xi as the estimator.

Question: is the estimator reasonably accurate?

To answer it, we need to understand the behavior of sums of independent RVs!

Let X1, . . . , Xn be i.i.d. RVs with mean µ and variance σ2 <∞. Let
µ̂ := 1

n

∑n
i=1Xi.

I µ̂ is another RV with mean µ and variance σ2/n.

I The variance is reduced by a factor of n!

I Lower variance means less uncertainty, i.e., we can reduce the uncertainty by
averaging. The more we average, the less the uncertainty.
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Can we say more about the distribution of µ̂?

Theorem (Central Limit Theorem)
Let X1, X2, ..., Xn be independent random variables with means µ and variances
σ2 <∞. Then 1

n

∑n
i=1Xi → N (µ, σ2/n) in distribution as n→∞.

I The conditions are sufficient but not necessary.

I The distribution of µ̂ tends to be Gaussian quickly regardless of the form of
the distribution of Xi!

I It captures the i.i.d case.
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