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Outline

» Least Squares Estimation

» Application: Linear Regression



Motivations

> Bayesian Estimators
» MAP or MMSE: require knowledge of the likelihood function p(z|6) and prior
distribution p(0)
» LMMSE: require 1st and 2nd order statistics: pg, o, Cq, Co, and Cyy
» Classical Estimator

» ML and MVUE: require likelihood function p(x|6)
» BLUE: require a linear model and the noise covariance C,,.

What if none of the statistical information is unavailable:
that is, p(z]0), C,, Cy, C,, are not known?

> Least squares estimation (LSE) does not require a statistical model.



Least Squares Estimation (LSE)

» Model

» Signal model (known): s(@), which describes the relationship between the
desired signal and parameter
> Observed model: x =s(0) +w

» LSE: minimize the following objective function
N

J(0) = |zn —sa(0) =[x —s(0)]3

i=1

=tr{[x —s(8)][x — s(0)]"}

éLSE = argmin ||x — S(O)H%
0

There is no IE in the objective function!



Least Squares Estimation (LSE)

Some examples of signal models
> Non-linear signal model: s, = cos(2nfn), n=1,---,N. Estimate f.

> It is usually difficult to find the explict solution for non-linear signal models,
and it needs to be solved with numerical methods.

> Linear signal model: s(0) = HO

» Linear LSE. Easy to solve.

> Affine signal model: s(6) = HO + b

» Can be easily converted to linear models.



Linear LSE

» Signal Model s(6) = HO

> Problem formulation (there is no assumption about the distribution of noise)
min || x — HO)||?
6
Solutions
» Objective function

J(O) =[x —HO [x —HO =x"x —x"HO — 0"H 'x + 0"H'HO

.(0)

= —2H"x +2HTHO =
20 X + 0

» If HTH is invertible

Oise = (HTH)'Hx
6



Linear LSE

» Minimum objective function

min J(0) = [x — HO]  [x — HO)
=x"x —x"THO - 9THTX + éTHTHé
=x'x —xTHMH"H)'H x
=x" [I-HMH"H) 'H"] x



Performance of Linear LSE

Consider the case that the noise is zero-mean E[w] = 0 with covariance matrix C.

» Unbiased estimator

E6] = (H'H) 'H'x = (H"H) 'H" (HO + w) = 6

» Covariance matrix of @

> If the noise is white C = oI

Cy=0’(H'H)'



Linear LSE v.s. BLUE
» BLUE:
éBLUE = (HTC_lH)_lHTC_lx
C — (HchlHT)fl

OpLUE

» Linear LSE: A
Ose = (H'H)'H'x

C, =(HH'H'CHH"H)!

éLSE
» The linear LSE is the same as BLUE if
C=04

that is, white noise (distribution unknown).



Applications: Linear Regression

suppose we make noisy observations of an unknown function f according to
yi = f(xi) +wi, i=1,---,n

where x; € R? is a p-dimensional vector with p < n, and w; are observation noise.

> Regression (function estimation): estimate f by using the n observatons
(Xi7yi)v 1= 17 , 1.

> Linear Regression: assume the function is linear (affine)

P
Yi = Bo + Brxi1 + Paxiz + - + BpTip = Bo + Z BrTik
k=1

Estimate 8 = [Bo, 81, - , Bp)T by using the n observations (x;,v;),
i=1,--,n.
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Linear Regression

y=XB+w

» observation vector y, coefficient vector 3, noise vector w

Y1

Y2
y=1|". |eR™, B=

Yn

» data matrix
1z
1 21
X:

1 Tnl

A
P2

i

T12
T22

Tn2
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wi
e RP*! w = 11?2
Wn,
Tip
33.2;0 c Rnxp
Tup

c ]R’n><1



Linear Regression

» Solution:

BLSE = (X"X)"'X"y

» Covariance matrix of 3, gg If the noise is zero-mean and white with
covariance matrix C = 0?1

Cy=o?(X'X)™!
var(B;) = (Cp)ii
» The impact of x; on the output y can be evaluated by using the combination

B; and var(;).

12



