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Outline

I Least Squares Estimation

I Application: Linear Regression
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Motivations

I Bayesian Estimators
I MAP or MMSE: require knowledge of the likelihood function p(x|θ) and prior

distribution p(θ)
I LMMSE: require 1st and 2nd order statistics: µx, µθ, Cx, Cθ, and Cθx

I Classical Estimator
I ML and MVUE: require likelihood function p(x|θ)
I BLUE: require a linear model and the noise covariance Cw.

What if none of the statistical information is unavailable:
that is, p(x|θ), Cx, Cθ, Cw are not known?

I Least squares estimation (LSE) does not require a statistical model.
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Least Squares Estimation (LSE)

I Model
I Signal model (known): s(θ), which describes the relationship between the

desired signal and parameter
I Observed model: x = s(θ) +w

I LSE: minimize the following objective function

J(θ) =

N∑
i=1

|xn − sn(θ)|2 = ‖x− s(θ)‖22

= tr
{
[x− s(θ)][x− s(θ)]T

}
θ̂LSE = argmin

θ
‖x− s(θ)‖22

There is no E in the objective function!
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Least Squares Estimation (LSE)

Some examples of signal models

I Non-linear signal model: sn = cos(2πfn), n = 1, · · · , N . Estimate f .

I It is usually difficult to find the explict solution for non-linear signal models,
and it needs to be solved with numerical methods.

I Linear signal model: s(θ) = Hθ

I Linear LSE. Easy to solve.

I Affine signal model: s(θ) = Hθ + b

I Can be easily converted to linear models.
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Linear LSE

I Signal Model s(θ) = Hθ

I Problem formulation (there is no assumption about the distribution of noise)

min
θ
‖x−Hθ‖2

Solutions

I Objective function

J(θ) = [x−Hθ]T [x−Hθ] = xTx− xTHθ − θTHTx+ θTHTHθ

∂J(θ)

∂θ
= −2HTx+ 2HTHθ = 0

I If HTH is invertible

θ̂LSE = (HTH)−1HTx
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Linear LSE

I Minimum objective function

min J(θ) = [x−Hθ̂]T [x−Hθ̂]

= xTx− xTHθ̂ − θ̂
T
HTx+ θ̂

T
HTHθ̂

= xTx− xTH(HTH)−1HTx

= xT
[
I−H(HTH)−1HT

]
x
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Performance of Linear LSE

Consider the case that the noise is zero-mean E[w] = 0 with covariance matrix C.

I Unbiased estimator

E[θ̂] = (HTH)−1HTx = (HTH)−1HT (Hθ +w) = θ

I Covariance matrix of θ̂

Cθ̂ = E[θ̂θ̂
T
]− θθT

= (HTH)−1HTE[xxT ]H(HTH)−1 − θθT

= (HTH)−1HT (HθθTHT +Cw)H(HTH)−1 − θθT

= (HTH)−1HTCH(HTH)−1

I If the noise is white C = σ2I

Cθ̂ = σ2(HTH)−1
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Linear LSE v.s. BLUE

I BLUE:
θ̂BLUE = (HTC−1H)−1HTC−1x

Cθ̂BLUE
= (HTC−1HT )−1

I Linear LSE:
θ̂LSE = (HTH)−1HTx

Cθ̂LSE
= (HTH)−1HTCH(HTH)−1

I The linear LSE is the same as BLUE if

C = σ2I

that is, white noise (distribution unknown).
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Applications: Linear Regression

suppose we make noisy observations of an unknown function f according to

yi = f(xi) + wi, i = 1, · · · , n

where xi ∈ Rp is a p-dimensional vector with p < n, and wi are observation noise.

I Regression (function estimation): estimate f by using the n observatons
(xi, yi), i = 1, · · · , n.

I Linear Regression: assume the function is linear (affine)

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip = β0 +

p∑
k=1

βkxik

Estimate β = [β0, β1, · · · , βp]T by using the n observations (xi, yi),
i = 1, · · · , n.
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Linear Regression

y = Xβ +w

I observation vector y, coefficient vector β, noise vector w

y =


y1
y2
...
yn

 ∈ Rn×1, β =


β1
β2
...
βn

 ∈ Rp×1 w =


w1

w2

...
wn

 ∈ Rn×1

I data matrix

X =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

. . .
. . . · · ·

...
1 xn1 xn2 · · · xnp

 ∈ Rn×p
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Linear Regression

I Solution:

β̂LSE = (XTX)−1XTy

I Covariance matrix of β̂LSE If the noise is zero-mean and white with
covariance matrix C = σ2I

Cβ̂ = σ2(XTX)−1

var(β̂i) = (Cβ̂)ii

I The impact of xi on the output y can be evaluated by using the combination
β̂i and var(β̂i).
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