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Minimum Variance Unbiased Estimators (MVUE)

I Recall MSE(θ̂) = ‖bias(θ̂)‖22 + var(θ̂)

I It is usually impossible to design θ̂ to minimize the MSE because the bias
depends on the true value θ∗, which is unknown.

I Restrict to unbiased estimators, E(θ̂) = θ∗. Then MSE(θ̂) = var(θ̂)

I Note var(θ̂) does not depend on θ∗.

I A realizable approach: optimize the MSE with respect to all unbiased
estimators.

I Minimum Variance UnBiased (MVUB) estimator is defined as

θ̂ = argmin
θ̂:E(θ̂)=θ∗

E[‖θ̂ − E(θ̂)‖22]
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Example
X1, X2, . . . , Xn i.i.d. ∼ N (θ∗, σ2). Let θ̂ = 1

n

∑n
i=1 xi. We have

Eθ̂ = θ∗

MSE(θ̂) =
1

n2

n∑
i=1

varXi =
σ2

n

Is this the MVUB estimator?

This question can be answered by using Cramer-Rao Lower Bound (CRLB).
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MVUE

I Does a MVUE always exist?

I If it does, can we always find it?

I Can we say anything about MVUE?
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Cramer-Rao Lower Bound (CRLB)

I The CRLB gives a lower bound on the variance of ANY UNBIASED estimator

I Does NOT guarantee the bound can be achieved.

I Can be used to verify that a particular estimator is MVUB.

I Otherwise we can use other tools to construct a better estimator from any
unbiased one – Possibly the MVUE if conditions are met.
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CRLB for Scalar Parameters

Theorem (Cramer-Rao Lower Bound (CRLB))
Let p(x|θ) satisfy the regularity condition

E

[
∂ ln p(x|θ)

∂θ

]
= 0

Then the variance of any unbiased estimator θ̂ must satisfy

var(θ̂) ≥ 1

−E
[
∂2 ln p(x|θ)

∂θ2 |θ=θ∗
] =

1

E

[(
∂ ln p(x|θ)

∂θ

)2
|θ=θ∗

]
Furthermore an unbiased estimator may be found that attains the bound for all θ
iff

∂ ln p(x|θ)
∂θ

= I(θ)[g(x)− θ]

for some g(·) and I. That estimator, which is the MVUE, is θ̂ = g(x) and the
minimum variance is 1/I(θ).
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Example
X1, X2, . . . , Xn i.i.d. ∼ N (θ∗, σ2). Let θ̂ = 1

n

∑n
i=1 xi. Is it MVUB?

Solution:

log p(x|θ) = N log
√

2πσ2 − 1

2σ2

n∑
i=1

(Xi −A)2

∂

∂θ
log p(x|θ) =

1

σ2

n∑
i=1

(Xi −A)

∂2

∂2θ
log p(x|θ) = − n

σ2

I(θ∗) = E

[(
∂ log p(x|θ)

∂θ

)2

|θ=θ∗
]

=
1

σ4

n∑
i=1

E[(xi − θ∗)2] =
n

σ2
= −E

[
∂2 ln p(x|θ)

∂θ2
|θ=θ∗

]

varθ̂ ≥ 1

I(θ∗)
=
σ2

n
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More about I(θ)

I Fisher Information

I(θ) = −E
[
∂2 ln p(x|θ)

∂θ2
|θ=θ∗

]
= E

[(
∂ ln p(x|θ)

∂θ

)2

|θ=θ∗
]

I It is always non-negative.

I It is additive for independent observations.

I The CRLB for N i.i.d. observations is 1/N times that for one observation.
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Theorem (Vector Form of the Cramer-Rao Lower Bound (CRLB))
Assume p(x|θ) satisfy the regularity condition E

[
∂ ln p(x|θ)

∂θ

]
= 0,∀θ. Let

θ̂ = θ̂(x) be an unbiased estimator of θ∗. Then the error covariance satisfies

E[(θ̂ − Eθ̂)(θ̂ − Eθ̂)T ]− I−1(θ∗) � 0

where � 0 means the matrix is positive semi-definite. I(θ∗) is the
Fisher-Information matrix with (i, j)th element

Iij(θ
∗) = −E

[
∂2 log p(x|θ)

∂θi∂θj
|θ=θ∗

]
Furthermore an unbiased estimator may be found that attains the bound iff

∂ ln p(x|θ)

∂θ
= I(θ)[g(x)− θ]

In that case, θ̂ = g(x) is the MVUE with covariance matrix I−1(θ).
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Example
Consider x[n] = A+ w[n], n = 0, 1, . . . , N , where w[n] is WGN with variance σ2.
What is the CRLB for the vector parameter θ = [A, σ2]T ?

Solutions:
Let θ1 = A and θ2 = σ2.

I log p(x|θ) = −N2 log 2π − N
2 log σ2 − 1

2σ2

∑N
i−1(Xi −A)2

∂ log p(x|θ)

∂θ1
=

1

σ2

N∑
i−1

(Xi −A)

E

[
∂2 log p(x|θ)

∂θ21

]
= E

[
−N
σ2

]
= −N

σ2

E

[
∂2 log p(x|θ)

∂θ1∂θ2

]
= E

[
− 1

σ4

N∑
i=1

(Xi −A)

]
= 0
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Solution:(Cont’d)

∂ log p(x|θ)

∂θ2
= −N

2

1

σ2
+

1

2σ4

N∑
i−1

(Xi −A)2

E

[
∂2 log p(x|θ)

∂θ22

]
= E

[
N

2

1

σ4
− 1

σ6

N∑
i−1

(Xi −A)2

]
= − N

2σ4

E

[
∂2 log p(x|θ)

∂θ2∂θ1

]
= E

[
− 1

σ4

N∑
i−1

(Xi −A)

]
= 0

I Fisher Information matrix I(θ) =

[
N
σ2 0
0 N

2σ4

]
I I−1(θ) =

[
σ2

N 0

0 2σ4

N

]
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Solution:(Cont’d)

I If an estimator can achieve the CRLB, then it must saitsfy
∂ ln p(x|θ)

∂θ = I(θ)(g(x)− θ)

∂ ln p(x|θ)

∂θ
= I(θ)

([
1
N

∑N
i=1Xi

1
N

∑N
i=1(Xi −A)2

]
−
[
A
σ2

])
I Thus

Â =
1

N

N∑
i=1

Xi

σ̂2 =
1

N

N∑
i=1

(Xi −A)2

Therefore CRLB cannot be achieved because σ̂2 depends on the unknown
parameter A.

I Recall MLE: σ̂2
ML = 1

N

∑N
i=1(Xi − Â)2, E(σ̂2

ML) = N−1
N σ2. It is a biased

estiamtor.
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Efficiency

I An unbiased estimator that achieved the CRLB is said to be efficient.

I Efficient estimators are MVUB, but not all MVUB estimators are necessarily
efficient.

I An MVUB could minimimize the MSE, but the minimium achievable MSE is
larger than the CRLB.

I An estimator θ̂n is said to be asymptotically efficient if it achieves the CRLB,
as n→∞.

I Recall that under mild regularity conditions, the MLE has an asymptotic
distribution

θ̂n ∼ N
(
θ∗,

1

n
I−1(θ∗)

)
asymptotically

so θ̂n is asymptotically unbiased.

var(θ̂n) =
1

n
I−1(θ∗)

so it is asymptotically efficient.
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Best Linear Unbiased Estimators (BLUE)

So far, we have learned

I CRLB, may give you the MVUE

I MVUE still may be tough to find

Best Linear Unbiased Estimators

I Find the MVUE by constraining the estimators to be linear, i.e.,

θ̂ = ATx

I Only need the first and second moments of p(x|θ), which is fairly practical.

I Trading optimality for practicality. There is no reason to believe that a linear
estimator is efficient, an MVUE, or optimal in any sense.
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BLUE Assumptions

I In order to employ BLUE, the relationship between x and θ must be linear,
i.e.,

x = Hθ + w

This ensures that we can find a linear unbiased estimator.

I H is known

I C = E[(x− E[x])(x− E[x])T ] is known.

We wish to find the linear unbiased estimator with the minimum variance for each
θi ∈ θ.

I θ̂ = ATx

I ATH = I

I Find AT to minimize
∑N
i=1 var(θ̂i) = tr(ATCA)
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BLUE Formulation

min
A

tr(ATCA)

s.t. ATH = I

Solutions: This is a convex optimization problem.
I J(A) = tr

(
ATCA)− (ATH− I)λ

)
I ∂J(A)

∂A = 2CA−Hλ = 0 ⇒ A = 1
2C
−1Hλ

I Determine λ by using the constraint ATH = I = 1
2λ

THTC−1H = I

1

2
λT = (HTC−1H)−1

I Optimum solution

θ̂ = (HTC−1H)−1HTC−1x

I Error covariance matrix

Cθ̂ = E[(ATx− θ)(ATx− θ)T ] = E[ATwwTA] = ATCA = (HTC−1H)−1

Solving the optimization problem, we have

aOPT =
C−1s

sTC−1s

var(θ̂) =
1

sTC−1s
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Theorem (Gauss-Markov)
If the data are of the general linear model form

x = Hθ + w

where H is a known N × p matrix, θ is a p× 1 vector of parameters to be
estimated, and w is a N × 1 noise vector with zero mean and covariance C, then
the BLUE of θ is

θ̂ = (HTC−1H)−1HTC−1x

In addition, the covariance matrix of θ̂ is

Cθ̂ = (HTC−1H)−1
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Example
xn = A+ wn, n = 1, . . . , N , wn not Gaussian, but independent, identically
distributed with zero mean and variance σ2.

Solutions:

I H = 1N
ÂBLUE = 1

N

∑N
i=1 xi var(ÂBLUE) = σ2

N

I The sample mean is the BLUE independent of the PDF of the data. It is the
MVUE for Gaussian noise.

I Recall MMSE: ÂMMSE =
σ2
A

σ2
A+ 1

N σ
2 X̄ var(ÂMMSE) =

σ2
Aσ

2

Nσ2
A+σ2 = σ2

N+ σ2

σ2
A

I

var(ÂMMSE) ≤ var(ÂBLUE)

lim
σ2
A→∞

var(ÂBLUE) = var(ÂMMSE)

I In MMSE, we have prior information about A (µA = 0 and σ2
A). In BLUE

and MVUE, no prior information of A is avaiable σ2
A =∞).
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Example
x[n] = A+ w[n], n = 0, 1, . . . , N − 1, w[n] not Gaussian, but independent with
zero mean and variance σ2

n.
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Example
For the general linear model

x = Hθ + s + w

where s is a known N × 1 vector and E[w] = 0, E[wwT ] = C. Find the BLUE.

Solutions: Let y = x− s.
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Example
Consider the following curve fitting problem, where we wish to find θ0, · · · , θp−1
so as to best fit the experimental data points (tn, x(tn)) for n = 0, · · · , N − 1 by
the polynomial curve

x(tn) = θ0 + θ1tn + θ2t
2
n + · · ·+ θp−1t

p−1
n + w(tn) (1)

where w(tn) are i.i.d. with zero mean and variance σ2. Find the BLUE of
θ = [θ0, θ1, · · · , θp−1]T .
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