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Classical Estimation

I Classical Estimation: θ is deterministic but unknown.

I The generative (or forward) model under classical setting

θ → p(x|θ)→ x

which involves the likelihood only.

I The generative (or forward) model under Bayesian setting

p(θ)→ θ → p(x|θ)→ x

which involves the prior and likelihood.
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Basic Concepts

I Loss `(θ, θ̂)

I Risk: R(θ, θ̂) = Ex[`(θ, θ̂)]

I Bias: bias(θ̂) = Ex[θ̂(x)]− θ

I An estimator is unbiased if bias(θ̂) = 0 for all θ ∈ Θ.

I Variance:

var(θ̂) = tr
(
E
[
(θ̂(x)− Eθ̂(x))(θ̂(x)− Eθ̂(x))T

])
= E

[
‖θ̂(x)− Eθ̂(x)‖22

]
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Mean Square Error (MSE)

MSE(θ̂) = Ex[‖θ − θ̂(x)‖22]

= Ex

{∥∥θ − E[θ̂(x)] + E[θ̂(x)]− θ̂(x)
∥∥2

2

}
= ‖θ − E[θ̂(x)]‖22 + E[‖θ̂(x)− E[θ̂(x)]‖22]

+ 2(θ − E[θ̂(x)])TE[θ̂(x)− E[θ̂(x)]]

= ‖bias(θ̂)‖22 + var(θ̂)

I Bia-Variance Decomposition
The MSE is contributed by two parts:

I Bias: ‖bias(θ̂)‖22
I Variance: var(θ̂)
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Example
X1, X2, . . . , Xn are i.i.d. random variables with pdf N (µ, 1), where µ is an
unknown parameter to estimate. Consider an estimator

µ̂n = µ̂(X1, X2, . . . , Xn) =
1

n

n∑
i=1

Xi

What is the bias, variance of the estimator? What is the MSE?
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Asymptotics

Suppose X1, X2, . . . , Xn are i.i.d. random variables with pdf p(x|θ), θ ∈ Θ, and

consider an estimator θ̂n = θ̂(X1, X2, . . . , Xn). How does θ̂n behave as n→∞?

Definition
θ̂n is asymptotically unbiased if limn→∞E[θ̂n]− θ = 0 for all θ ∈ Θ.

Definition
θ̂n is consistent (w.r.t chosen loss/risk) if limn→∞R(θ, θ̂n) = 0 for all θ ∈ Θ.
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Asymptotics

Example
X1, X2, . . . , Xn are i.i.d. random variables with pdf N (µ, 1), where µ is an
unknown parameter to estimate. Consider an estimator

µ̂n = µ̂(X1, X2, . . . , Xn) =
1

n

n∑
i=1

Xi

Consider `2 loss function `(µ, µ̂n) = ‖µ− µ̂n‖22, and the risk as
R(µ, µ̂n) = Ex[`(µ, µ̂n)].
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Maximum Likelihood Estimation

I The maximum Likelihood (ML) Estimate is given by

θ̂ = arg max
θ∈Θ

p(x|θ)

θ̂ = arg min
θ∈Θ

1

p(x|θ)
= arg min

θ∈Θ
− log p(x|θ)
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Example
Given a single observation of x generated according to p(x|θ) = 1

θ e
− xθ . What is

the MLE? Is it biased?

Solutions:

J(θ) = − log(p(x|θ)) = log θ +
x

θ
dJ(θ)

dθ
=

1

θ
− x

θ2
=

1

θ

(
1− x

θ

)
I If θ < x, then dJ(θ)

dθ < 0, that is, J(θ) decreases in θ

I If θ > x, then dJ(θ)
dθ > 0, that is, J(θ) increases in θ

I Thus J(θ) is quasi-convex in θ, and achieves the minimum at dJ(θ)
dθ = 0

θ̂ML = x

.
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Example
Given p(x;θ) = 1

(2π)n/2|Σ|1/2 exp{− 1
2 (x−Hθ)TΣ−1(x−Hθ)}, x ∈ Rn, θ ∈ Rk.

What is the MLE of θ?

Solutions:

J(θ) = (x−Hθ)TΣ−1(x−Hθ)

= xTΣ−1x− xTΣ−1Hθ − θTHTΣ−1x + θTHTΣ−1Hθ

∂J(θ)

∂θ
= −2HTΣ−1x + 2HTΣ−1Hθ = 0

θ̂ML = (HTΣ−1H)−1HTΣ−1x
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Example
Consider x[n] = A+ w[n], n = 0, 1, . . . , N , where w[n] is WGN with variance σ2.
Find MLE for the vector parameter θ = [A, σ2]T . Is it unbiased?

Solution: p. 183, Example 7.12, Kay Volume 1
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Example
Consider x[n] = A+ w[n], n = 0, 1, . . . , N , where w[n] is WGN with variance σ2.
Show that the following estimator is an unbiased estiamte of the vector parameter
θ = [A, σ2]T .

Â =
1

N

N∑
i=1

Xi

σ̂2 =
1

N − 1

N∑
i=1

(Xi − Â)2
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Asymptotic Distribution of the MLE

Theorem
Let x1, x2, . . . , xn be i.i.d observations generated according to p(x|θ∗), where
θ∗ ∈ Rd. Let

θ̂n := arg max
θ∈Θ

n∏
i=1

p(xi|θ) = arg max
θ∈Θ

n∑
i=1

log p(xi|θ)

and L(θ) := log p(x|θ) =
∑n
i=1 log p(xi|θ). Assume ∂L(θ)

∂θj
and ∂2L(θ)

∂θj∂θk
exist for

all j, k. Then,

θ̂n ∼ N
(
θ∗, I−1(θ∗)

)
asymptotically

where I(θ∗) is the Fisher-Information Matrix whose elements are given by

[I(θ∗)]i,j = −E
[
∂2 log p(x|θ)

∂θj∂θk
|θ=θ∗

]
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Asymptotic Distribution of the MLE

Example
Consider x[n] = A+ w[n], n = 0, 1, . . . , N , where w[n] is WGN with variance σ2.
Find the asymptotics of the MLE estimate of θ = [A, σ2]T .

Solution: p. 183, Theorem 7.3, Kay Volume 1
Let θ1 = A and θ2 = σ2.

I log p(x|θ) = −N2 log 2π − N
2 log σ2 − 1

2σ2

∑N
i−1(Xi −A)2

∂ log p(x|θ)

∂θ1
=

1

σ2

N∑
i−1

(Xi −A)

E

[
∂2 log p(x|θ)

∂θ2
1

]
= E

[
−N
σ2

]
= −N

σ2

E

[
∂2 log p(x|θ)

∂θ1∂θ2

]
= E

[
− 1

σ4

N∑
i=1

(Xi −A)

]
= 0
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Solution:(Cont’d)

∂ log p(x|θ)

∂θ2
= −N

2

1

σ2
+

1

2σ4

N∑
i−1

(Xi −A)2

E

[
∂2 log p(x|θ)

∂θ2
2

]
= E

[
N

2

1

σ4
− 1

σ6

N∑
i−1

(Xi −A)2

]
= − N

2σ4

E

[
∂2 log p(x|θ)

∂θ2∂θ1

]
= E

[
− 1

σ4

N∑
i−1

(Xi −A)

]
= 0

I Fisher Information matrix I(θ) =

[
N
σ2 0
0 N

2σ4

]
I I−1(θ) =

[
σ2

N 0

0 2σ4

N

]

I The exact coveriance matrix of θ̂ is C(θ̂) =

[
σ2

N 0

0 2(N−1)σ4

N2

]
∼ I−1(θ)
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MLE for Transformed Parameters

In many instances, we wish to estimate a function of θ.

Example
Let x1, x2, . . . , xn be be generated according to xi = A+Wi, where Wi are
WGN. Find the MLE of α = exp(A).

Solution: Since p(x|A) ∼ N (A, σ2), and α is a one-to-one transformation of A,
we can equivalently parameterize the pdf as

pT (x|α) ∼ N (logα, σ2)

The MLE of α is found by maximizing pT (x|α).
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Solution: (Cont’d)

pT (x|α) =
1

√
2πσ2

N
exp

(
− 1

2σ2

N∑
i=1

(Xi − logα)2

)
∂ log pT (x|α)

∂α
=

1

σ2α

∑
(Xi − logα) = 0

logα =
1

N

N∑
i=1

Xi = X̄ = ÂML

α̂ML = exp(ÂML)

The MLE of the transformed parameter is found by substituting the MLE of the
original parameter into the transformation.
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Example
Now consider the transformation α = A2 for the previous example.

Since A = +/−
√
α, the transformation is not one-to-one.

If A =
√
α, pt1(x|α) ∼ N (

√
α, σ2).

If A = −
√
α, pt1(x|α) ∼ N (−

√
α, σ2).

Then, the MLE of α is

α̂ = arg max
α

(
pt1(x|α), pt2(x|α)

)
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Invariance of the MLE

Theorem
The MLE of the parameter α = g(θ), where the pdf p(x|θ) is parameterized by θ
is given by

τ̂ = g(θ̂)

where θ̂ is the MLE of θ. If g is not a non-to-one function, then α̂ maximizes the
modified likelihood function pt(x|α) defined as

pt(x|α) = max
θ:α=g(θ)

p(x|θ)
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