ELEG 5633: Detection and Estimation Homework 9

1. For the posterior PDF

$$p(\theta|x) = \frac{\epsilon}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(\theta-x)^2)\right] + \frac{1-\epsilon}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(\theta+x)^2)\right]$$

- (a) when $\epsilon = 1/2$, plot the pdf with Matlab for x = 0.5 and x = 1.5, resepctively, and find the MMSE estimator.
- (b) when $\epsilon = 3/4$, plot the pdf with Matlab for x = 0.5 and x = 1.5, respectively, and find the MMSE estimator.
- 2. Given μ , data x[n], n = 0, 1, ..., N are i.i.d observations generated according to $x[n]|\mu \sim \mathcal{N}(\mu, \sigma^2)$. Assume σ^2 is deterministic and known, μ has prior PDF $\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)$. Find the MAP estimators of μ .
- 3. Given μ , data x[n], n = 0, 1, ..., N are i.i.d observations generated according to $x[n]|\mu \sim \mathcal{N}(\mu, \sigma^2)$. Assume σ^2 is deterministic and known, μ has prior PDF $\mu \sim \mathcal{N}(\mu_0, \sigma_0^2)$.
 - (a) Find the MMSE estimator of μ .
 - (b) Comparing the MMSE estimator with the MAP estimator.
 - (c) What happens as $\sigma_0^2 \to 0$ and $\sigma_0^2 \to \infty$?