ELEG 5633: Detection and Estimation Homework 7

- 1. Find the matrix prewhitener **D** for the covariance matrix $\mathbf{C} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$.
- 2. A binary communication system with N = 2 employs $s_0 = [1 1]^T$ and $s_1 = [1 \ 1]^T$. The received signal is embedded in WGN with variance $\sigma^2 = 1$. Draw the decision regions in \mathbb{R}^2 to minimize P_e . Do not assume that $P(H_0) = P(H_1)$. Explain your results.
- 3. Find the NP detector for the problem of a random signal s[n] with mean zero and covariance matrix $\mathbf{C}_s = \operatorname{diag}(\sigma_1^2, \sigma_2^2, \ldots, \sigma_{N-1}^2)$ embedded in WGN with variance σ^2 . Assume that the data samples observed are x[n] for $n = 0, 1, \ldots, N-1$
- 4. We wish to detect the $N \times 1$ Gaussian random signal **s** with zero mean and covariance matrix $\mathbf{C}_s = (\sigma_s^2/2)(\mathbf{11}^T + \mathbf{1}^-(\mathbf{1}^-)^T)$ in WGN with variance σ^2 . The vectors are defined as $\mathbf{1} = [1, 1, \dots, 1]^T$ and $\mathbf{1}^- = [1, -1, 1, -1, \dots, -1]^T$ (assume N is even). If N = 10, plot P_D versus σ_s^2/σ^2 for $P_{\text{FA}} = 10^{-2}$. Hint: the eigenvectors of \mathbf{C}_s with nonzero eigenvalues are $\mathbf{1}/\sqrt{N}$ and $\mathbf{1}^-/\sqrt{N}$.