ELEG 5633: Detection and Estimation Homework 6

- 1. Consider a binary hypothesis:
- $H_0: X \sim \text{Bernoulli}(0.3)$ $H_1: X \sim \text{Bernoulli}(0.6)$
- Find $D(P_1 || P_0)$ and $D(P_0 || P_1)$
- Based on a sequence of i.i.d. observations x_1, \dots, x_n , design the ML test
- What is the upper bound of $P_{\rm MD}$?
- How many i.i.d. samples do we need to achieve $P_{\rm MD} < 0.1$?
- 2. It is desired to detect the know signal $s[n] = Ar^n$ for n = 0, 1, ..., N 1 in WGN with variance σ^2 . Find the NP detector and its detection performance. Explain what happens as $N \to \infty$ for 0 < r < 1, r = 1 and r > 1.
- 3. A radar signal $s[n] = A \cos 2\pi f_0 n$ for $n = 0, 1, \dots, N-1$ is received embedded in white Gaussian noise with variance σ^2 . A detector is to be designed that maintains $P_{FA} = 10^{-8}$. If $f_0 = 0.25$ and N = 25, find the probability of detection versus A.
- 4. We wish to design a signal for the best detection performance in WGN. Two competing signals are proposed. They are

$$s_1[n] = A, \quad n = 0, 1, \dots, N-1$$

 $s_2[n] = A(-1)^n, \quad n = 0, 1, \dots, N-1$

Which one will yield the better detection performance?