ELEG 5633: Detection and Estimation Homework 4

1. Based on an observation of $X = [X_1, X_2]^T$, we wish to distinguish between two hypotheses

$$H_0: \quad X \sim \mathcal{N}(0, \sigma^2 I_{2 \times 2})$$
$$H_1: \quad X \sim \mathcal{N}(\mu, \sigma^2 I_{2 \times 2})$$

where $\mu = [\mu_1, \mu_2]^T$. If $\pi_0 = \pi_1$, find the decision regions that minimize P_e . Manually sketch the decision region if $\mu_1 = \mu_2 = 1$.

2. Consider binary hypothesis

$$H_0: \quad X \sim \mathcal{N}(0,1)$$
$$H_1: \quad X \sim \mathcal{N}(0,2)$$

- (a) Find the MAP decision rule, which should be expressed as a function of $\pi_0 = \Pr(H_0)$.
- (b) Find the decision region if $\pi_0 = 1/2$. Find the probability of error P_e .
- (c) Find the decision region if $\pi_0 = 3/4$. Find the probability of error P_e .
- (d) Briefly explain the differences between the two decision regions in (b) and (c).
- 3. Consider an observed sample $X \sim \mathcal{N}(\mu, 1)$ with a binary hypothesi $H_0: \mu = 0$ versus $H_1: \mu = 1$.
 - (a) Determine the Neyman-Pearson (NP) test for the hypothesis. Assume the constraint is $P_{\rm FA} \leq \alpha$.
 - (b) Express $P_{\rm D}$ as a function of the $P_{\rm FA}$ constraint α .
 - (c) Use Matlab to plot $P_{\rm D}$ versus $P_{\rm FA} = \alpha$.