ELEG 5633: Detection and Estimation Homework 12

- 1. The data $x[n] = Ar^n + w[n]$ for n = 0, 1, ..., N 1 are observed, where A is an unknown parameter, r is a known constant, and w[n] is WGN with known variance σ^2 . Find the BLUE of A and the minimum variance. Does the variance approach zero as $N \to \infty$?
- 2. The observed samples x[n] for n = 0, 1, ..., N 1 are i.i.d according to the following PDFs
 - (a) Laplacian

$$p(x[n]|\mu) = \frac{1}{2} \exp\{|x[n] - \mu|\}$$

(b) Gaussian $x[n] \sim \mathcal{N}(\mu, 1)$

Find the BLUE of the mean μ in both cases. (Hint: for the Laplacian case, assume $x[n] = \mu + w[n]$, then find the variance of $x - \mu$)

3. (Curve fitting). The file HW12_data.mat contains two vectors, $\mathbf{x} = [x(t_1), \cdots, x(t_N)]^T$ and $\mathbf{v} = [t_1, \cdots, t_N]$. Download the file, and you can load the data in Matlab by using the command:

load HW12_data.mat

We would like to find the polynomial fitting of the data

$$x(t_n) = \theta_0 + \theta_1 t_1 + \dots + \theta_{p-1} t_n^{p-1} + w(t_n)$$

- (a) Using BLUE, solve the coefficients $\boldsymbol{\theta}$ with Matlab by setting p = 5.
- (b) Plot the raw data (as '*') and the fitted curve in the same figure.