ELEG 5633 Detection and Estimation Course Syllabus

General Information:	Instructor: Jingxian Wu Email: wuj@uark.edu Office Hour: Tu. Th. 11:00-12:00	Office: Bell 3181 Phone: (479) 575-6584
Textbooks:	 Steven M. Kay, "Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory", Prentice Hall, 1993 Steven M. Kay, "Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory", Prentice Hall, 1998 Software: Matlab with Signal Processing Toolbox 	
Reference:	 Harry L. Van Trees, "Detection, Estimation, and Modulation Theory", Part I, II, III, IV H. Vincent Poor, "Introduction to Signal Detection and Estimation" Louis L. Scharf and Cedric Demeure, "Statistical Signal Processing: Detection, Estimation, and Time Series Analysis" 	
Prerequisites:	 Signal and System, Probability and Random Process Familiar with Matlab Programming Knowledge of linear time invariant system, Fourier series and transform, Laplace transform, time domain and frequency domain representation of signals, power spectrum density, and energy spectrum density of deterministic signals Knowledge of discrete and continuous random variable, probability mass function, probability density function, moments of random variables, moment generating function Knowledge of random process, wide sense stationary random process, auto- correlation function, power spectrum density of random signals 	
Learning Objectives:	To understand the theory and algorithms of detection and estimation. Detection and classification theory and algorithms, including hypothesis testing, signal detection in the presence of noise. Estimation theory, including maximum likelihood estimation, Bayesian signal processing, etc.	
Grading:	 Test 1 30% Test 2 30% Homework and Projects 40% 	 A: 90 ≤ grade ≤ 100 B: 80 ≤ grade < 90 C: 70 ≤ grade < 80 D: 60 ≤ grade < 70 F: 0 ≤ grade < 60
	 Due dates for homework and lab report will be strictly enforced. <u>Late</u> submission within one week after due date will receive a 20% grade deduction, and no credit if submitted after one week from the due date. If for some legitimate reason (sickness, death in the family, etc.), you cannot 	

• If for some legitimate reason (sickness, death in the family, etc.), you cannot take an **exam** on the scheduled day, you must notify the instructor **prior** to the <u>exam</u>.

Online Resources:	 Course materials (Slides, Homework, Projects, References, etc) can be found at https://wuj.hosted.uark.edu/teaching/eleg5633/eleg5633.html Please check course website at least once per week for updates.
Academic Honesty:	Each University of Arkansas student is required to be familiar with and abide by the University's 'Academic Integrity Policy' which may be found at http://provost.uark.edu/ Students with questions about how these policies apply to a particular course or assignment should immediately contact their instructor.
Course Outline:	 Introduction Review of Probability and Statistics Review of Linear Algebra Parametric Models and Sufficient Statistics Detection and Classification Hypothesis Testing (Simple Binary, Composite, Multiple) Detection of Signals in Noise, Energy and Subspace Detection Asymptotics, Kullback-Leibler Divergence Estimation Theory Bayesian Estimation MMSE Maximum Likelihood Estimation Least squares estimation Advanced Topics Wiener and Kalman Filtering, Inverse Problems, Sparsity, Graphical Models
	The above schedule is subject to change without prior notice.