ELEG 4603/5173L Digital Signal Processing
Ch. 1 Discrete-Time Signals and Systems

Dr. Jingxian Wu
wuj@uark.edu
OUTLINE

• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems

• Causality and stability

• Difference equation representation of LTI systems
• **Discrete-time signal**

 -- A signal that is defined only at discrete instants of time.
 -- Represented as $x(n)$, $n = \cdots, -3, -2, -1, 0, 1, 2, 3, \cdots$

\[
x(n) = \cos\left(\frac{n}{4}\right)
\]

\[
x(n) = \frac{1}{2} \exp\left(\frac{n}{4}\right)
\]

SIGNAL CLASSIFICATION
• **Review: Analog v.s. digital**
 – Continuous-time signal $x(t)$,
 • continuous-time, continuous amplitude \rightarrow **analog signal**
 – Example: speech signal
 • Continuous-time, discrete amplitude
 – Example: traffic light
 – Discrete-time signal $x(n)$,
 • Discrete-time, discrete-amplitude \rightarrow **digital signal**
 – Example: Telegraph, text, roll a dice
 • Discrete-time, continuous-amplitude
 – Example: samples of analog signal, average monthly temperature
SIGNAL CLASSIFICATION

- Periodic signal v.s. aperiodic signal
 - Periodic signal \(x(n) = x(n + N) \)
 - The smallest value of \(N \) that satisfies this relation is the fundamental periods.
 - Is \(\cos(\omega n) \) periodic?

\[\cos(\omega n) \text{ is periodic if } \frac{2k\pi}{\omega} = N \text{ is an integer, and the smallest } N \text{ is the fundamental period.} \]

- Example: \(\cos(3n) \)

\[
\begin{align*}
\cos(\pi n) \\
\cos\left(\frac{3}{4} \pi n\right)
\end{align*}
\]
SIGNAL CLASSIFICATION

- Sum of two periodic signals

\[x_1(n) : \text{fundamental period} \quad N_1 \]
\[x_2(n) : \text{fundamental period} \quad N_2 \]
\[x_1(n) + x_2(n) \]

\[x_1(n) + x_2(n) \] is periodic if both \(x_1(n) \) and \(x_2(n) \) are periodic. Assume

\[\frac{N_1}{N_2} = \frac{p}{q} \]

where \(p \) and \(q \) are not divisible of each other. The period is \(N = pN_2 = qN_1 \)
SIGNAL CLASSIFICATION

- **Example:**
 - Is the signal periodic? If it is, what is the fundamental period?

\[
\cos\left(\frac{\pi n}{9}\right) + \sin\left(\frac{3\pi n}{7} + \frac{1}{2}\right)
\]
SIGNAL CLASSIFICATION

- **Energy signal**
 - Energy:
 \[
 E = \lim_{N \to \infty} \sum_{n=-N}^{N} |x(n)|^2 = \sum_{n=-\infty}^{\infty} |x(n)|^2
 \]
 - Review: energy of continuous-time signal
 \[
 E = \int_{-\infty}^{+\infty} |x(t)|^2 \, dt
 \]
 - Energy signal: \(0 < E < \infty\)
SIGNAL CLASSIFICATION

- **Power signal**
 - Power of discrete-time signal
 \[
 P = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} |x(n)|^2
 \]
 - Review: power of continuous-time signal
 \[
 P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt
 \]
 - Power signal: \(0 < P < \infty\)
SIGNAL CLASSIFICATION

• **Example**

 – Determine if the discrete-time exponential signal is an energy signal or power signal

 \[x(n) = 2(0.5)^n \quad n \geq 0 \]
OUTLINE

• Classifications of discrete-time signals

• **Elementary discrete-time signals**

• Linear time-invariant (LTI) discrete-time systems

• Causality and stability

• Difference equation representation of LTI systems
ELEMENTARY SIGNALS

- **Basic signal operations**
 - Time shifting $x(n - k)$
 - shift the signal to the right by k samples

 ![Graphs of $x(n)$, $x(n+3)$, and $x(n-3)$](images)

- Reflecting $x(-n)$
 - Reflecting $x(n)$ with respect to $n = 0$.

 ![Graphs of $x(n)$ and $x(-n)$](images)
ELEMENTARY SIGNALS

- **Basic signal operations**
 - Time scaling
 - Example: Let \(x(n) = \begin{cases} 1, & n \text{ even} \\ -1, & n \text{ odd} \end{cases} \)

Find \(x(2n) \), \(x(2n + 1) \)
ELEMENTARY SIGNALS

• Basic signal operations
 – Time scaling
 • Example: \(x(n) = [-1, 2, 1, 0, -2] \)

\[\Rightarrow \text{the always points to } x(0)\]

\[
\text{find } x(3n), x\left(\frac{n}{3}\right), x\left(\frac{n}{3} + \frac{2}{3}\right)
\]
ELEMENTARY SIGNALS

- **Unit impulse function**
 \[\delta(n) = \begin{cases}
 1, & n = 0, \\
 0, & n \neq 0.
\end{cases} \]

 - time shifting
 \[\delta(n - k) = \begin{cases}
 1, & n = k, \\
 0, & n \neq k.
\end{cases} \]

- **Unit step function**
 \[u(n) = \begin{cases}
 0, & n < 0, \\
 1, & n \geq 0.
\end{cases} \]

- **Relation between unit impulse function and unit step function**
 \[\delta(n) = u(n) - u(n-1) \]

 \[u(n) = \sum_{k=-\infty}^{n} \delta(k) \]
Elementary Signals

- **Exponential function**

 \[x(n) = \exp(\alpha n) \]

- **Complex exponential function**

 \[x(n) = \exp(j\omega_0 n) = \cos(\omega_0 n) + j \sin(\omega_0 n) \]

 - \(x(n) \) is periodic if \(\frac{2k\pi}{\omega_0} = N \) is an integer, and the smallest integer \(N \) is the fundamental period.

- **Example**

 - Are the following signals periodic? If periodic, find fundamental period.

 \[x_1(n) = \exp\left(j\frac{7\pi}{9}n\right) \quad x_2(n) = \exp\left(j\frac{7}{9}n\right) \]
OUTLINE

• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems

• Causality and stability

• Difference equation representation of LTI systems
DISCRETE-TIME SYSTEMS

• **Linear system**
 - Consider a system with the following input-output relationship

 \[x_1(n) \rightarrow \text{System} \rightarrow y_1(n) \]
 \[x_2(n) \rightarrow \text{System} \rightarrow y_2(n) \]

 - The system is linear if it meets the superposition principle

 \[\alpha x_1(n) + \beta x_2(n) \rightarrow \text{System} \rightarrow \alpha y_1(n) + \beta y_2(n) \]

• **Time-invariant system**
 - Consider a system with the following input-output relationship

 \[x(n) \rightarrow \text{System} \rightarrow y(n) \]

 - The system is time-invariant if a time-shift at the input leads to the same time-shift at the output

 \[x(n-k) \rightarrow \text{System} \rightarrow y(n-k) \]
Any arbitrary discrete-time signal can be decomposed as weighted summation of the unit impulse functions

\[x(n) = \sum_{k=-\infty}^{+\infty} x(k) \delta(n - k) \]

- Why?
 E.g. \(x(3) = \sum_{k=-\infty}^{+\infty} x(k) \delta(3 - k) = \)

- Recall: \(x(t) = \int_{-\infty}^{+\infty} x(\tau) \delta(t - \tau) d\tau \)
• **LTI response to arbitrary input**
 - Any arbitrary signal can be written as
 \[
x(n) = \sum_{k=\infty}^{+\infty} x(k) \delta(n-k)
 \]
 - Time-invariant
 \[
 \delta(n-k) \xrightarrow{\text{LTI}} h(n-k)
 \]
 - Linear
 \[
 \sum_{k=\infty}^{+\infty} x(k) \delta(n-k) \xrightarrow{\text{LTI}} \sum_{k=\infty}^{+\infty} x(k)h(n-k)
 \]
 \[
 x(n) \xrightarrow{\text{LTI}} y(n) = \sum_{k=\infty}^{+\infty} x(k)h(n-k)
 \]
DISCRETE-TIME SYSTEM

- **Convolution sum**
 - The convolution sum of two signals $x(n)$ and $h(n)$ is

 $$x(n) \otimes h(n) = \sum_{k=-\infty}^{+\infty} x(k)h(n-k)$$

- **Response of LTI system**
 - The output of a LTI system is the convolution sum of the input and the impulse response of the system.
Examples

1. \(x(n) \otimes \delta(n - m) \)

2. \(x(n) = \alpha^n u(n), \quad h(n) = \beta^n u(n) \)
\[x(n) \otimes h(n) = \]
Example

3. Find the step response of the system with impulse response

\[h(n) = 2 \left(\frac{1}{2} \right)^n \cos \left(\frac{2\pi}{3} n \right) u(n) \]
Example:

Let \(x(n) = [0,1,2] \) and \(h(n) = [-1,-2,-3,-4] \), be two sequences, find \(x(n) \otimes h(n) \).
DISCRETE-TIME SYSTEM

• Properties: commutativity

\[x(n) \otimes h(n) = h(n) \otimes x(n) \]
• Properties: associativity

\[x(n) \otimes h_1(n) \otimes h_2(n) = [x(n) \otimes h_1(n)] \otimes h_2(n) = x(n) \otimes [h_1(n) \otimes h_2(n)] \]
• Distributivity

\[x(n) \otimes [h_1(n) + h_2(n)] = [x(n) \otimes h_1(n)] + [x(n) \otimes h_1(n)] \]
• Example

 Consider a system shown in the figure. Find the overall impulse response.

 $$h_1(n) = \delta(n) - 2\delta(n-1) \quad h_2(n) = (n-1)u(n) \quad h_3(n) = 2^n u(n)$$
OUTLINE

• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems

• Causality and stability

• Difference equation representation of LTI systems
CAUSALITY AND STABILITY

- **Causal system**
 - A discrete-time system is causal if the output \(y(n_0) \) depends only on values of input for \(n \leq n_0 \)
 - The output does not depend on future input.
 - Example:
 - determine whether the following systems are causal.
 \[
 y(n) = x^2(n) + 3x(n)
 \]
 \[
 y(n) = x^2(n-1)
 \]
 \[
 y(n) = \frac{1}{3} [x(n-1) + x(n) + x(n+1)]
 \]
 \[
 y(n) = \sum_{k=-\infty}^{n} x(k)
 \]
 \[
 y(n) = \sum_{k=-\infty}^{n+1} x(k)
 \]
CAUSALITY AND STABILITY

- **Causality of LTI system**
 - An LTI system is causal if and only if $h(n)=0$ for $n < 0$
 - Why?
 \[
 y(n) = \sum_{-\infty}^{+\infty} x(k)h(n-k) = \sum_{-\infty}^{n} x(k)h(n-k) + \sum_{n+1}^{+\infty} x(k)h(n-k)
 \]
 - A signal $x(n)$ is causal if $x(n)=0$ for $n < 0$.
 - Example:
 - For LTI systems with impulse responses given as follows. Find if the systems are casual.
 \[
 h(n) = \cos(2n)
 \]
 \[
 h(n) = \cos(2n)u(n)
 \]
 \[
 h(n) = a^n u(n) + b^n u(n+1)
 \]
 \[
 h(n) = a^n u(n) + b^n u(n-1)
 \]
CAUSALITY AND STABILITY

• Bounded-input bounded-output (BIBO) stable
 – a system is BIBO stable if, for any bounded input $x(n)$, the response $y(n)$ is also bounded.

• BIBO stability of LTI system
 – An LTI discrete-time system is BIBO stable if

\[\sum_{-\infty}^{+\infty} |h(k)| < \infty \]

• Why?
Example

For an LTI system with impulse responses as follows. Are they BIBO stable?

\[h(n) = (0.5)^n u(n) \]

\[h(n) = (-0.5)^n u(n) \]

\[h(n) = (0.5)^n \]

\[h(n) = 2^n u(n) \]

\[h(n) = 2^n u(-n) \]
OUTLINE

- Classifications of discrete-time signals
- Elementary discrete-time signals
- Linear time-invariant (LTI) discrete-time systems
- Causality and stability
 - Difference equation representation of LTI systems
• Difference equation representation of LTI discrete-time system
 – Any LTI discrete-time system can be represented as

\[\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \]

– Review: any LTI continuous-time system can be represented as

\[\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k} \]
DIFFERENCE EQUATION

- Simulation diagram

\[y(n) + a_1 y(n-1) + \cdots + a_N y(n-N) = b_0 x(n) + b_1 x(n-1) + \cdots + b_N x(n-N) \]
Example

Draw the simulation diagram of the LTI system described by the following difference equation

$$2y(n) + 3y(n-1) = 0.5x(n) + x(n-1) + 5x(n-2)$$
• **Example**
 – The impulse response of an LTI system is $h(n) = [2, 3, 0, 5]$
 • Find the difference equation representation
 • Draw the simulation diagram.