ELEG 5173L Digital Signal Processing Ch. 4 The Discrete Fourier Transform

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- The Discrete Fourier Transform (DFT)
- Properties
- Fast Fourier Transform
- Applications

DISCRETE FOURIER TRANSFORM (DFT)

- Review DTFT: Discrete-time Fourier transform

$$
X(\Omega)=\sum_{n=-\infty}^{+\infty} x(n) e^{-j \Omega n} \quad 0 \leq \Omega \leq \pi
$$

- Limitations for computer implementation:
- 1. Infinite number of time domain samples $\quad x(n) \quad-\infty \leq n \leq \infty$
- Requires infinite memory
- $2 . \Omega$ is a continuous variable
- We can only approximate $X(\Omega)$ in a computer
- Possible solutions:
- 1. limit the number of time domain samples $\quad x(n) \quad 0 \leq n \leq N-1$

$$
X_{N}(\Omega)=\sum_{n=0}^{N-1} x(n) e^{-j \Omega n} \quad 0 \leq \Omega \leq \pi
$$

- 2. Sample $X_{N}(\Omega)$ in the frequency domain: $\quad \Omega_{k}=\frac{2 \pi k}{N} \quad 0 \leq k \leq N-1$

$$
X_{N}\left(\Omega_{k}\right)=\sum_{n=0}^{N-1} x(n) e^{-j \Omega_{k} n}=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi k}{N} n}
$$

DISCRETE FOURIER TRANSFORM (DFT)

- Discrete Fourier Transform (DFT)

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi k n}{N}}
$$

- Finite number time domain samples

$$
\begin{array}{ll}
x(n) & 0 \leq n \leq N-1 \\
X(k) & 0 \leq k \leq N-1
\end{array}
$$

- Inverse Discrete Fourier Transform (IDFT)

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi k n}{N}}
$$

- Periodicity in the frequency domain
- Recall: the DTFT is periodic $\quad X(\Omega)=X(\Omega+2 \pi)$
- The DFT $X(k)$ is periodic with period N

$$
X(k)=X(k+N)
$$

- Proof
- Time domain sampling leads to frequency domain repetition.
- Periodicity in the time domain
- The time domain signal $x(n)$ from the IDFT is also periodic with period N

$$
\begin{gathered}
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi k n}{N}} \\
x(n)=x(n+N)
\end{gathered}
$$

- Proof
- frequency domain sampling leads to time domain repetition.
- Example
- Find the DTFT of $x(n)=(0.8)^{n} u(n)$,
- Find the DFT of $\quad \hat{x}(n)=(0.8)^{n} u(n), \quad 0 \leq n \leq N-1$
- Plot the DTFT, and plot the DFT when $\mathrm{N}=5,10,20$, and 50 , respectively.
- Example
- A finite-duration sequence of length Lis given as follows. Find the Npoint DFT of this sequence for $N \geq L$. Plot the frequency response.

$$
x(n)=\left\{\begin{array}{lc}
1, & 0 \leq n \leq L-1 \\
0, & \text { otherwise }
\end{array}\right.
$$

- Relationship between DFT and DTFT
- DFT

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j \frac{2 \pi k n}{N}} \quad 0 \leq k \leq N-1
$$

- DTFT

$$
Y(\Omega)=\sum_{n=-\infty}^{+\infty} x(n) e^{-j \Omega n} \quad 0 \leq \Omega \leq \pi
$$

- Relationship

$$
X(k)=\left.Y(\Omega)\right|_{\Omega=\frac{2 \pi k}{N}}
$$

- DFT index $k \rightarrow$ angular digital frequency $2 \pi \frac{k}{N}$ radians
- DFT index $k \rightarrow$ angular analog frequency $2 \pi \frac{k}{N T_{s}}$ radians/sec
- $2 \pi \frac{k}{N} \in\left[0, \frac{2 \pi}{N}, \cdots, 2 \pi \frac{N-1}{N}\right]$
- Frequency domain resolution
- $\Omega_{k}=2 \pi \frac{k}{N}$
- Freq. domain resolution: Space between 2 freq. domain samples

$$
\Delta \Omega=\Omega_{k}-\Omega_{k-1}=\frac{2 \pi}{N}
$$

- Larger $N \rightarrow$ smaller $\Delta \Omega=\frac{2 \pi}{N} \rightarrow$ better frequency domain resolution
- Example:

$$
x(n)=\left\{\begin{array}{lc}
1, & 0 \leq n \leq 7 \\
0, & \text { otherwise }
\end{array}\right.
$$

DFT N=32

DFT $N=64$

- Matrix representation of DFT
- DFT: let $W_{N}=e^{\frac{-j 2 \pi}{N}}$

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}
$$

- Define DFT matrix
- The ($\mathrm{k}+1, \mathrm{n}+1)$-th element is $W_{N}^{k n}$

$$
\mathbf{W}=\left[\begin{array}{ccccc}
W_{N}^{0} & W_{N}^{0} & W_{N}^{0} & \cdots & W_{N}^{0} \\
W_{N}^{0} & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
W_{N}^{0} & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}
\end{array}\right]
$$

- Matrix representation of DFT

$$
\begin{gathered}
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n} \\
{\left[\begin{array}{c}
X(0) \\
X(1) \\
\vdots \\
\vdots \\
X(N-1)
\end{array}\right]=\left[\begin{array}{ccccc}
W_{N}^{0} & W_{N}^{0} & W_{N}^{0} & \cdots & W_{N}^{0} \\
W_{N}^{0} & W_{N}^{1} & W_{N}^{2} & \cdots & W_{N}^{N-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
W_{N}^{0} & W_{N}^{N-1} & W_{N}^{2(N-1)} & \cdots & W_{N}^{(N-1)(N-1)}
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
\vdots \\
x(N-1)
\end{array}\right]} \\
\mathbf{X}=\mathbf{W x}
\end{gathered}
$$

- Matrix representation of IDFT
- DFT: let $W_{N}=e^{\frac{-j 2 \pi}{N}} \quad W_{N}^{*}=e^{\frac{j 2 \pi}{N}}$

$$
x(k)=\frac{1}{N} \sum_{n=0}^{N-1} X(n)\left(W_{N}^{k n}\right)^{*}
$$

- Define IDFT matrix
- The (k, n)-th element is $\left(W_{N}^{n k}\right)^{*}=W_{N}^{-n k}$

$$
\mathbf{W}^{H}=\left[\begin{array}{ccccc}
W_{N}^{0} & W_{N}^{0} & W_{N}^{0} & \cdots & W_{N}^{0} \\
W_{N}^{0} & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
W_{N}^{0} & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)(N-1)}
\end{array}\right]
$$

\mathbf{W}^{H} : the complex transpose of \mathbf{W} (transpose the matrix, then take the complex conjugate of all the elements)

- Matrix representation of IDFT

$$
\begin{gathered}
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n} \\
{\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
\vdots \\
x(N-1)
\end{array}\right]=\frac{1}{N}\left[\begin{array}{ccccc}
W_{N}^{0} & W_{N}^{0} & W_{N}^{0} & \cdots & W_{N}^{0} \\
W_{N}^{0} & W_{N}^{-1} & W_{N}^{-2} & \cdots & W_{N}^{-(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
W_{N}^{0} & W_{N}^{-(N-1)} & W_{N}^{-2(N-1)} & \cdots & W_{N}^{-(N-1)(N-1)}
\end{array}\right]\left[\begin{array}{c}
X(0) \\
X(1) \\
\vdots \\
\vdots \\
\\
\mathbf{x}=\frac{1}{N} \mathbf{W}^{H} \mathbf{X}
\end{array}\right.}
\end{gathered}
$$

OUTLINE

- The Discrete Fourier Transform (DFT)
- Properties
- Fast Fourier Transform
- Applications

PROPERTIES

- Linearity

$$
\begin{aligned}
-\quad x_{1}(n) \leftrightarrow X_{1}(k) \quad & x_{2}(n) \leftrightarrow X_{2}(k) \\
& a x_{1}(n)+b x_{2}(n) \leftrightarrow a X_{1}(k)+b X_{2}(k)
\end{aligned}
$$

- Periodicity
- If $x(n) \leftrightarrow X(k)$
- Then

$$
\begin{gathered}
x(n)=x(n+N) \\
X(k)=X(k+N)
\end{gathered}
$$

PROPERTIES

- Circular shift
- circular shifting a length- N signal, $x(n)$, to the right by n_{0} positions

$$
x\left(n-n_{0}\right)_{N}
$$

- Example: $\mathrm{N}=4$

$$
\begin{aligned}
x(n) & =[x(0), x(1), x(2), x(3)] \\
x(n-1)_{4} & =[x(3), x(0), x(1), x(2)] \\
x(n-2)_{4} & =[x(2), x(3), x(0), x(1)] \\
x(n-3)_{4} & =[x(1), x(2), x(3), x(0)]
\end{aligned}
$$

$\left(n-n_{0}\right)_{N}=n-n_{0}+p N \quad$, where p is an integer chosen such that $0 \leq n-n_{0}+p N \leq N-1$

- Why circular shift?
- Recall: in DFT, $x(n)$ is periodic in N

$$
\begin{aligned}
x(n): & \cdots x(0), x(1), x(2), x(3), x(0), x(1), x(2), x(3), x(0), x(1), x(2), x(3) \cdots \\
x(n-1): & \cdots x(0), x(1), x(2), x(3), x(0), x(1), x(2), x(3), x(0), x(1), x(2), x(3) \cdots
\end{aligned}
$$

PROPERTIES

- Time shifting
- If $\quad x(n) \leftrightarrow X(k)$
- Then ${ }_{x\left(n-n_{0}\right)_{N} \leftrightarrow X(k) \exp \left(-j \frac{2 \pi}{N} k n_{0}\right)}$
- This is a circular shift
- because $x(n)$ is periodic in N

PROPERTIES

- Example
- Consider a sequence $\mathbf{x}=[1,-1,2,4,-2,3]$
- Find the DFT
- If we circular shift x to the right by two locations, find the new sequence and its DFT

PROPERTIES

- Circular convolution
- The circular convolution between two length- N sequences $x(n)$ and $h(n)$ is

$$
y(n)=\sum_{k=0}^{N-1} x(k) h(n-k)_{N}
$$

- Graphical interpretation for $N=4$

$$
x(k)=[x(0), x(1), x(2), x(3)]
$$

$$
\begin{array}{ll}
n=0: h(-k)_{N}=[h(0), h(3), h(2), h(1)] & y(0)=x(0) h(0)+x(1) h(3)+x(2) h(2)+x(3) h(1) \\
n=1: h(1-k)_{N}=[h(1), h(0), h(3), h(2)] & y(1)=x(0) h(1)+x(1) h(0)+x(2) h(3)+x(3) h(2) \\
n=2: h(2-k)_{N}=[h(2), h(1), h(0), h(3)] & y(2)=x(0) h(2)+x(1) h(1)+x(2) h(0)+x(3) h(3) \\
n=3: h(3-k)_{N}=[h(3), h(2), h(1), h(0)] & y(3)=x(0) h(3)+x(1) h(2)+x(2) h(1)+x(3) h(0)
\end{array}
$$

PROPERTIES

- Example
- Find the circular convolution of the following two sequences

$$
x(n)=[2,1,2,1] \quad h(n)=[1,2,3,4]
$$

PROPERTIES

- Example
- Find the circular convolution of the two sequences

$$
x(n)=[3,1,2,5,4] \quad h(n)=[1,2,3,4,5]
$$

PROPERTIES

- Circular convolution and DFT
- Consider two length-N sequences $x(n)$ and $h(n)$. There N-point DFTs are $X(k)$ and $H(k)$, respectively.

$$
\sum_{m=0}^{N-1} x(m) h(n-m)_{N} \Leftrightarrow X(k) H(k)
$$

- Circular convolution in the time domain is equivalent to multiplication in the discrete frequency domain

PROPERTIES

- Example
- Find the circular convolution of the two sequences by using DFT

$$
x(n)=[2,1,2,1] \quad h(n)=[1,2,3,4]
$$

PROPERTIES

- Multiplication of two sequences
- Consider two length-N sequences $x(n)$ and $h(n)$. Their N-point DFTs are $\mathrm{X}(\mathrm{k})$ and $\mathrm{H}(\mathrm{k})$, respectively.

$$
x(n) h(n) \Leftrightarrow \frac{1}{N} \sum_{m=0}^{N-1} X(m) H(n-m)_{N}
$$

- Multiplication in the time domain is equivalent to circular convolution in the discrete frequency domain

PROPERTIES

- Example
- Consider two length- N sequences. Find the circular convolution of their 4point DFTs.

$$
x(n)=[3,1,5,4] \quad h(n)=[2,6,1,3]
$$

PROPERTIES

- Time-reversal
- If the N-point DFT of $x(n)$ is $X(k)$, then

$$
x(-n)_{N} \Leftrightarrow X(-k)_{N}
$$

- Example
- If the 6-point DFT of $\mathrm{x}(\mathrm{n})$ is $\mathrm{X}(\mathrm{k})=[3,-2,4,-1,5]$. Find the DFT of $x(-n)_{N}$

PROPERTIES

- Parseval's theorem
- If the N-point DFT of $x(n)$ is $X(k)$, then

$$
\sum_{n=0}^{N-1}|x(n)|^{2} \Leftrightarrow \frac{1}{N} \sum_{k=0}^{N-1}|X(k)|^{2}
$$

- Example
- If $x(n)=[2+j, 1,1-j, 3]$, find $\sum_{k=0}^{3}|X(k)|^{2}$

OUTLINE

- The Discrete Fourier Transform (DFT)
- Properties
- Fast Fourier Transform
- Applications
- Fast Fourier Transform (FFT)
- A faster implementation of DFT (NOT a new transform!)
- The result is exactly the same as DFT, just the implementation is faster.
- Complexity of DFT

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}
$$

- For each k, there are N complex multiplications
- The above formula needs to be performed N times for $k=0,1, \ldots, N-1$
- Total number of complex multiplications: N^{2}
- Total number of complex multiplications for FFT: $N \log _{2}(N)$
- FFT
- There are many different ways of implementing FFT
- Decimation in time
- Decimation in frequency
- ...
- It utilizes the following property

$$
\begin{gathered}
W_{N / 2}=\exp \left(-j \frac{2 \pi}{N / 2}\right)=\exp \left(-j \frac{2 \pi}{N} 2\right)=\left[\exp \left(-j \frac{2 \pi}{N}\right)\right]^{2}=W_{N}^{2} \\
W_{N / 2}=W_{N}^{2} \\
W_{N / 2}^{k}=W_{N}^{2 k}
\end{gathered}
$$

- FFT: decimation in time

$$
\begin{gathered}
X(k)=\sum_{n \text { even }} x(n) W_{N}^{k n}+\sum_{n o d d} x(n) W_{N}^{k n} \\
X(k)=\sum_{r=0}^{N / 2-1} x(2 r) W_{N}^{2 r k}+\sum_{r=0}^{N / 2-1} x(2 r+1) W_{N}^{(2 r+1) k}
\end{gathered}
$$

let

$$
\begin{aligned}
& g(r)=x(2 r) \quad h(r)=x(2 r+1) \\
& X(k)=\sum_{r=0}^{N / 2-1} g(r) W_{N}^{2 r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} h(r) W_{N}^{2 r k} \\
& X(k)=\sum_{N=}^{N / 2-1} g(r) W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} h(r) W_{N / 2}^{r k} \\
& X(k)=G(k)+W_{N}^{k} H(k)
\end{aligned}
$$

- FFT: decimation in time (cont'd)

$$
\begin{aligned}
X(k)= & \sum_{x 0}^{x / 2-1} g(r) W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{x / 2-1} h(r) W_{N / 2}^{r k} \\
& X(k)=G(k)+W_{N}^{k} H(k)
\end{aligned}
$$

- $G(k)$ is the $N / 2$-point DFT of the even-indexed samples $g(r)=x(2 r)$
- $H(k)$ is the $N / 2$-point DFT of the odd-indexed samples $\quad h(r)=x(2 r+1)$
- Based on periodicity

$$
\begin{gathered}
G(k)=G(k+N / 2) \quad H(k)=H(k+N / 2) \\
X(k+N / 2)=G(k)+W_{N}^{k+N / 2} H(k)
\end{gathered}
$$

- Butterfly

- FFT: decimation in time
- The N-point DFT is decomposed into:
- $2 \mathrm{~N} / 2-$ point DFTs
- N complex multiplications

- FFT: decimation in time
- Each N/2-point DFT can be decomposed into
- 2 N/4-point DFTs
- N/2 complex multiplications

(a)

- FFT: Decimation in time
- Example 8-point FFT

- Each stage requires N complex multiplications
- There are $\log _{2}(N)$ stages
- Total number of complex multiplications $N \log _{2}(N)$

OUTLINE

- The Discrete Fourier Transform (DFT)
- Properties
- Fast Fourier Transform
- Applications

APPLICATIONS

- Dual-tone multi-frequency (DTMF)
- In the touch tone telephone, pressing each key on the telephone will generate a DTMF signal
- The signal contains two frequencies

	$\begin{array}{ll}\text { column 1 } & \text { column 2 } \\ 1209 \mathrm{~Hz} & 1336 \mathrm{~Hz}\end{array}$		column 3 1477 Hz	column 4 $1633 \mathrm{~Hz}$
row 1697 Hz	1	2	3	A
row 2770 Hz	4	5	6	B
row 3852 Hz	7	8	9	C
row 4941 Hz	*	0	\#	D

APPLICATIONS

- DTMF
- Example
- There is a DTMF signal with sampling frequency Fs $=8 \mathrm{KHz}$. The duration of the signal is 0.4 s . Performing FFT on the signal, and there are two peaks in the frequency domain at $\mathrm{k}=308$ and $\mathrm{k}=484$
- How many samples are in the signal?
- What is the resolution of the analog freuqency (in Hz)?
- What are the analog frequencies (in Hz) corresponding to the two peaks?

APPLICATIONS

- DTMF
- Example
- There is a DTMF signal with sampling frequency Fs $=8 \mathrm{KHz}$. The duration of the signal is 0.5 s . The signal is generated by pressing the key '9'. Performing FFT on the signal. Which digital frequency indices (k) corresponding to the peaks in the frequency domain?

