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• The Discrete-Time Fourier Transform (DTFT) 

 

• Properties 

 

• DTFT of Sampled Signals 

 

• Upsampling and downsampling 

 

 

 

 

 

 

 

 



• Review: Z-transform: 

 

 

– Replace z with           . 

 

DTFT 
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• Discrete-time Fourier Transform (DTFT) 
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• Review: Fourier transform: 
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DTFT 

• Relationship between DTFT and Fourier Transform 

– Sample a continuous time signal            with a sampling period T 

 

 

 

– The Fourier Transform of  

 

 

 

– Define: 

•            digital frequency (unit: radians)  

•            analog frequency  (unit: radians/sec) 

 

– Let  
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DTFT 

• Relationship between DTFT and Fourier Transform (Cont’d) 

– The DTFT can be considered as the scaled version of the Fourier 

transform of the sampled continuous-time signal 
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DTFT 

• Discrete Frequency 

– Unit: radians (the unit of continuous frequency is radians/sec) 

–               is a periodic function with period 

 

 

 

 

– We only need to consider                for 

• For Fourier transform, we need to consider  

 

–                                              

 

–                                              
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DTFT 

• Example: find the DTFT of the following signal 

– 1.  )()( nnx 

– 2.   1),()(   nunx n



DTFT 

• Example 

– Find the DTFT of  
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DTFT 

• Example 

– Find the DTFT of the following signal 

 

 

 

 

 

 

 

• Existence of DTFT 

– The DTFT of x(n) exists if x(n) satisfies 
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DTFT 

• Inverse DTFT 

 

 

 

• Example 

– Find the inverse DTFT of  

10 

 

 
 2

)(
2

1
)( deXnx nj

)( 0



DTFT 

• Example 

– Find the DTFT of  
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• The Discrete-Time Fourier Transform (DTFT) 

 

• Properties 

 

• DTFT of Sampled Signals 

 

• Upsampling and downsampling 

 

 

 

 

 

 

 

 



PROPERTIES 

• Periodicity 

 

 

 

 

• Linearity 

– If  

 

– Then 
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PROPERTIES 

• Time shifting 

–  If  

– Then  

 

 

 

 

 

• Frequency shifting 

– If  

– Then 
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PROPERTIES 

• Differentiation in Frequency 

–  If  

– Then  

 

 

 

– Review 

• Example 

– Find the DTFT of   
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PROPERTIES 

• Convolution 

–  If  

– Then  

 

 

• Example 

– Find the frequency response of the system   
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PROPERTIES 

• Example 

–  A LTI system with impulse response 

 if the input is   

  

 Find the output 
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PROPERTIES 

• Example 

–  The frequency response of an ideal low pass filter is  

 

  

 find the impulse response.  

 (1) Assume                  . If the sampling rate of the input signal is 1 KHz, 

what is the cutoff frequency for the analog signal? 

 (2) If the sampling rate of the input signal is 2 KHz, what is the cutoff 

frequency of the analog signal? 
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PROPERTIES 

• Modulation 

–  If  

– Then  
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• The Discrete-Time Fourier Transform (DTFT) 

 

• Properties 

 

• Application: DTFT of Sampled Signals 

 

• Upsampling and downsampling 
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APPLICATION: SAMPLING THEOREM 

• Sampling theorem: time domain 

– Sampling: convert the continuous-time signal to discrete-time signal. 
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APPLICATION: SAMPLING THEOREM 

• Sampling theorem: frequency domain 

– Fourier transform of the impulse train 

• impulse train is periodic 
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APPLICATION: SAMPLING THEOREM 

• Sampling theorem: frequency domain 

– Sampling in time domain  Repetition in frequency domain 
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APPLICATION: SAMPLING THEOREM 

• Sampling theorem 

– If the sampling rate is twice of the bandwidth, then the original signal can 

be perfectly reconstructed from the samples.  

Bs  2

Bs  2

Bs  2

Bs  2 aliasing 



APPLICATION: SAMPLING THEOREM 

• Analog signal          v.s. sampled signal           v.s. discrete-time 

signal  
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APPLICATION: SAMPLING THEOREM 

• Fourier transform of sampled signal 

 

 

 

• DTFT of discrete-time signal 

 

 

 

• Relationship 
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APPLICATION: SAMPLING THEOREM 

• Relationship among  

–   
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APPLICATION: SAMPLING THEOREM 

• Example 

– Consider the analog signal             with Fourier transform shown in the 

figure. The signal has a one-sided bandwidth 5 Hz. The signal is sampled 

with a sampling period                        .  

 Draw                and     
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APPLICATION: SAMPLING THEOREM 

• Reconstruction of sampled signal 

– If there is no aliasing during sampling, the analog signal can be 

reconstructed by passing the sampled signal through an ideal low pass 

filter with cutoff frequency  
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• The Discrete-Time Fourier Transform (DTFT) 

 

• Properties 

 

• Application: DTFT of Sampled Signals 

 

• Upsampling and downsampling 

 

 

 

 

 

 

 

 



UPSAMPLING AND DOWNSAMPLING 

• Sampling rate conversion 

– In many applications, we may have to change the sampling rate of a signal 

as the signal undergoes successive stage of processing.  

• E.g.  
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UPSAMPLING AND DOWNSAMPLING 

• Sampling rate conversion 

– Sampling rate conversion can be directly performed in the digital domain 

– Downsampling (decimation) 

• Reduce the sampling frequency (less samples per unit time) 

– Upsampling (interpolation) 

• Increase the sampling frequency (more samples per unit time) 
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UPSAMPLING AND DOWNSAMPLING 

• Downsampling (decimation) 

– Assume a digital signal,        , is obtained by sampling an analog signal            

at a sampling period T (or a sampling frequency 1/T). 

 

– The signal can also be sampled with a sampling period MT (or a lower 

sampling frequency 1/(MT) ) 

 

 

– Relationship between           and 

 

–              is the downsampled (or decimated) version of 

•            can be obtained by picking one sample out of every M 

consecutive samples of x(n)   decimation. 

 

 

 

33 

)(nx )(txa

)()( nTxnx a

)()( nMTxnx ad 

)(nx )(nxd

)()( nMxnxd 

)(nxd
)(nx

)(nxd

]),8(),7(),6(),5(),4(),3(),2(),1(),0([)( xxxxxxxxxnx 

),3(x),0([)( xnxd  ),6(x ],3M



UPSAMPLING AND DOWNSAMPLING 

• Downsampling (decimation): frequency domain 

– Assume all the sampling rates are higher than the Nyquist sampling rate 

– The DTFT of x(n) with a sampling period T 

 

 

– The DTFT of            with a sampling period MT     
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UPSAMPLING AND DOWNSAMPLING 

• Example 

– Consider the frequency response of an ideal low pass filter 

 

 

 

• Determine h(n)  

• If we downsample h(n) with a factor of M = 2. Find the downsampled 

response in both the time and frequency domains.  
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UPSAMPLING AND DOWNSAMPLING 

• Upsampling (interpolation) 

– Assume a digital signal,        , is obtained by sampling an analog signal            

at a sampling period T (or a sampling frequency 1/T). 

 

– Upsampling by a factor of L 

• Inserting L-1 zeros between the original samples 

 

 

 

– The effective sampling period of the upsampled signal         (sampling 

rate:       )   
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UPSAMPLING AND DOWNSAMPLING 

• Upsampling (interpolation): frequency domain 

– The DTFT of            with a sampling period T/L 

 

 

 

 

• The DTFT of             is compressed in the frequency domain 
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UPSAMPLING AND DOWNSAMPLING 

• Example 

– A discrete pulse is given by x(n) = u(n)-u(n-4). Suppose we upsample x(n) 

by a factor of L = 3. Find the DTFT of the original and upsampled signals. 

38 


