
Department of Electrical Engineering
University of Arkansas

ELEG 4603/5173L Digital Signal Processing 

Ch. 1 Discrete-Time Signals and Systems

Dr. Jingxian Wu

wuj@uark.edu



OUTLINE

2

• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems 

• Causality and stability

• Difference equation representation of LTI systems
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SIGNAL CLASSICIATION

• Discrete-time signal

– A signal that is defined only at discrete instants of time. 

– Represented as             
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• Review: Analog v.s. digital

– Continuous-time signal

• continuous-time, continuous amplitude analog signal

– Example: speech signal

• Continuous-time, discrete amplitude

– Example: traffic light

– Discrete-time signal

• Discrete-time, discrete-amplitude  digital signal

– Example: Telegraph, text, roll a dice

• Discrete-time, continuous-amplitude

– Example: samples of analog signal, 

average monthly temperature 
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SIGNAL CLASSIFICATION

• Periodic signal v.s. aperiodic signal

– Periodic signal

• The smallest value of N that satisfies this relation is the fundamental 

periods.

– Is                     periodic?
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SIGNAL CLASSIFICATION

• Sum of two periodic signals

)(1 nx : fundamental period  
1N

)(2 nx : fundamental period  2N

)()( 21 nxnx  is periodic if  both            and            are periodic.                     
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SIGNAL CLASSIFICATION

• Example:

– Is the signal periodic? If it is, what is the fundamental period?
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SIGNAL CLASSIFICATION

• Energy signal

– Energy: 
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– Review: energy of continuous-time signal

– Energy signal:  E0
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SIGNAL CLASSIFICATION

• Power signal

– Power of discrete-time signal
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– Power signal:  P0

– Review: power of continuous-time signal
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SIGNAL CLASSIFICATION

• Example

– Determine if the discrete-time exponential signal is an energy signal or 

power signal 
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• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems 

• Causality and stability

• Difference equation representation of LTI systems



ELEMENTARY SIGNALS

• Basic signal operations

– Time shifting

• shift the signal to the right by k samples

– Reflecting

• Reflecting x(n) with respect to n = 0. 
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ELEMENTARY SIGNALS

• Basic signal operations

– Time scaling

• Example: Let

Find                ,  
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ELEMENTARY SIGNALS

• Basic signal operations

– Time scaling

• Example:

the    always points to x(0)

find 
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ELEMENTARY SIGNALS

• Unit impulse function

– time shifting

• Unit step function
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• Relation between unit impulse function and unit step 

function
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ELEMENTARY SIGNALS

• Exponential function

• Complex exponential function

– x(n) is periodic if             is an integer, and the smallest integer N is the 

fundamental period.

• Example

– Are the following signals periodic? If periodic, find fundamental period.
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• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems 

• Causality and stability

• Difference equation representation of LTI systems



DISCRETE-TIME SYSTEMS

• Linear system

– Consider a system with the following input-output relationship

– The system is linear if it meets the superposition principle
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• Time-invariant system

– Consider a system with the following input-output relationship

– The system is time-invariant if a time-shift at the input leads to the same 

time-shift at the output
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• Any arbitrary discrete-time signal can be decomposed as weighted 

summation of the unit impulse functions

– Why?

E.g. 

– Recall: 

DISCRETE-TIME SYSTEM

• Impulse response of a LTI system

– The response of the system when the input is 
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DISCRETE-TIME SYSTEM

• LTI response to arbitrary input

– Any arbitrary signal can be written as

– Time-invariant

– Linear
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DISCRETE-TIME SYSTEM

• Convolution sum

– The convolution sum of two signals           and            is  
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• Response of LTI system

– The output of a LTI system is the convolution sum of the input and 

the impulse response of the system.
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DISCRETE-TIME SYSTEM

• Examples

– 1. 

– 2. 
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DISCRETE-TIME SYSTEM

• Example

– 3. Find the step response of the system with impulse response
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DISCRETE-TIME SYSTEM

• Example:

– Let                                                                               be two 

sequences, find  
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DISCRETE-TIME SYSTEM

• Properties: commutativity
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DISCRETE-TIME SYSTEM

• Properties: associativity
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DISCRETE-TIME SYSTEM

• Distributivity
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DISCRETE-TIME SYSTSEMS

• Example

– Consider a system shown in the figure. Find

the overall impulse response. 
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• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems 

• Causality and stability

• Difference equation representation of LTI systems



CAUSALITY AND STABILITY

• Causal system

– A discrete-time system is causal if the output            depends only on 

values of  input for           

• The output does not depend on future input.

– Example:

• determine whether the following systems are causal.

30

)( 0ny

0nn 

)1()( 2  nxny

)(3)()( 2 nxnxny 

 )1()()1(
3

1
)(  nxnxnxny





n

k

kxny )()(







1

)()(
n

k

kxny



• Causality of LTI system

– An LTI system is causal if and only if h(n)=0 for n < 0

• Why?

– A signal x(n) is causal if x(n)=0 for n < 0.

– Example: 

• For LTI systems with impulse responses given as follows. Find if the 

systems are casual.
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CAUSALITY AND STABILITY











1

)()()()()()()(
n

n

knhkxknhkxknhkxny

)2cos()( nnh 

)()2cos()( nunnh 

)1()()(  nubnuanh nn

)1()()(  nubnuanh nn



• Bounded-input bounded-output (BIBO) stable

– a system is BIBO stable if, for any bounded input x(n), the response y(n) is 

also bounded. 

• BIBO stability of LTI system

– An LTI discrete-time system is BIBO stable if

• Why?
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CAUSALITY AND STABILITY

• Example

– For an LTI system with impulse responses as follows. Are they BIBO 

stable?
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• Classifications of discrete-time signals

• Elementary discrete-time signals

• Linear time-invariant (LTI) discrete-time systems 

• Causality and stability

• Difference equation representation of LTI systems



DIFFERENCE EQUATION

• Difference equation representation of LTI discrete-time system

– Any LTI discrete-time system can be represented as

– Review: any LTI continuous-time system can be represented as
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DIFFERENCE EQUATION

• Simulation diagram
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DIFFERENCE EQUATION

• Example

– Draw the simulation diagram of the LTI system described by the following 

difference equation
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DIFFERENCE EQUATION

• Example

– The impulse response of an LTI system is

• Find the difference equation representation

• Draw the simulation diagram. 
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