General Information:	Instructor: Jingxian Wu Email: wuj@uark.edu Office Hour: Tue. 12:30-1:30	Office: Bell 3168 Phone: (479) 575-6584
Required Material:	Software: Matlab	
Reference:	 S.S. Soliman, M.D. Srinath, <i>Continuous and discrete signals and systems</i>, 2nd Ed., Prentice Hall, 1998. (Optional) Luis F. Chaparro, <i>Signals and Systems Using Matlab</i>, Academic Press, 2010. (Optional) 	
Prerequisites:	 ELEG 3124 Signals and Systems Familiarity with C Programming, Matlab Programming, and Assembly Programming Knowledge of continuous-time signals and systems Knowledge of convolution, Fourier transform, and Laplace transform Knowledge of Memory and Peripherals (e.g., RAM, ROM, ADC, DAC) 	
Learning Objectives:	To understand the concepts of discrete-time signals and systems, linear system analysis, frequency domain analysis, z-domain analysis. To understand the structure and concept of DSP, to be able to design various filters, communication applications, and multimedia applications with DSP.	
Grading:	 Test 1 24% Test 2 24% Test 3 24% Homework 14% Lab 14% Due dates for homework will be strictly week after due date will receive a 20% g submitted after one week from the due d If for some legitimate reason (sickness, or take a test on the scheduled day, you mutexam. 	 A: 90 ≤ grade ≤ 100 B: 80 ≤ grade < 90 C: 70 ≤ grade < 80 D: 60 ≤ grade < 70 F: 0 ≤ grade < 60 enforced. Late submission within one grade deduction, and no credit if late. death in the family, etc.), you cannot ust notify the instructor prior to the
Online Resources:	 Course materials (Slides, Homework, Labs, References, etc) can be found at <u>https://wuj.hosted.uark.edu/teaching/eleg5173/eleg5173.html</u> Please check course website at least once per week for updates. 	
Academic Honesty:	Each University of Arkansas student is required to be familiar with and abide by the University's 'Academic Integrity Policy' which may be found at http://provost.uark.edu/ Students with questions about how these policies apply to a particular course or assignment should immediately contact their instructor.	
Tentative	• Week 1: Ch.1 Discrete-Time Signals and Systems	

ELEG 51703 Digital Signal Processing Course Syllabus

Schedule:

- Week 2: Ch. 1 Discrete-time Signals and Systems
- Week 3: Ch. 1 Discrete-Time Signals and Systems
- Week 4: Ch. 2 The Z-Transform
- Week 5: Ch. 2 The Z-Transform
- Week 6: Ch. 2 The Z-Transform
- Week 7: Ch. 2 The Z-Transform (Test 1 on 3/6 Thu.)
- Week 8: Ch. 3 Discrete-Time Fourier Transform
- Week 9: Ch. 3 Discrete-Time Fourier Transform
- Week 10: Ch. 3 Discrete-Time Fourier Transform
- Week 11: Ch. 3 Discrete-Time Fourier Transform
- Week 12: Ch. 4 Discrete Fourier Transform
- Week 13: Ch. 4 Discrete Fourier Transform (Test 2 on 4/10 Thu.)
- Week 14: Ch. 4 Discrete Fourier Transform
- Week 15: Ch. 5 Discrete-Time Filters
- Week 16: Ch. 5 Discrete-Time Filters (reading day 5/2) Week 17: Test 3 in the week of 5/6

The above schedule is subject to change without prior notice.