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• Description of continuous-time random process
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• Ergodic and non-ergodic random process
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DEFINITION

• Stochastic process, or, random process

– A random variable changes with respect to time

• Example: the temperature in the room

– At any given moment, the temperature is random: random 

variable

– The temperature (the value of the random variable) changes with 

respect to time.
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DEFINITION

• Stochastic process (random process)

– Recall: Random variable is a mapping from random events to real 

number:             , where       is a random event

– Stochastic process is a random variable changes with time

• Denoted as:

• It is a function of random event     , and time t.   

• Recall: random variable is a function of random event  
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DEFINITION

• Stochastic process (random process)

– Fix time:                is a random variable

• pdf, CDF, mean, variance, moments, etc.

– fix event:                 is a deterministic time function

• Defined as a realization of a random process

• Or: a sample function of a random process
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DEFINITION

• Example

– Let       be a Gaussian random variable with 0 mean and unit variance, 

then 

is a random process .

• If we fix          , we get a Gaussian random variable

– The pdf of                  is:

• If we fix            , we get sample function

– It is a deterministic function of time
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DEFINITION

• Stochastic process:

– A random variable changes with respect to time 

• Sample function:

– A deterministic time function               associated with outcome     

• Ensemble:

– The set of all possible time functions of a stochastic process.
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DEFINITION

• Example

– Let      be  a random variable uniformly distributed between               , then

is a random process, where A is a constant. At 

Find the mean and  variance of 
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DEFINITION

• Example

– Let      be  a random variable uniformly distributed between               , and

a Gaussian random variable with 0 mean and variance       . Then   

is a random process.      and      are independent.   

Find the mean and variance of  the random process at 
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DEFINITION

• Continuous-time random process

– The time is continuous

– E.g. 

• Discrete-time random process

– The time is discrete

– E.g. 

• Continuous random process

– At any time,                is a continuous random variable

– E.g.                                          ,     is Gaussian distributed

• Discrete random process

– At any time,                  is a discrete random variable

– E.g.                                        ,      is a Bernoulli RV  
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DEFINITION

• Classifications

– Continuous-time v.s. discrete-time

– Continuous v.s. discrete

– Stationary v.s. non-stationary

– Wide sense stationary (WSS) v.s. non-WSS

– Ergodic v.s. non-ergodic

• Simple notation

– Random variable:              , usually denoted as 

– Random process:                 , usually denoted as 
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• Power spectral density



DESCRIPTION

• How do we describe a random process?

– A random variable is fully characterized by its pdf or CDF.

– How do we statistically describe random process?

• E.g. 

– We need to describe the random process in both the ensemble domain and 

the time domain

• Descriptions of the random process

– Joint distribution of time samples: joint pdf, joint CDF

– Moments: mean, variance, correlation function, covariance function
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DESCRIPTION

• Joint distribution of time samples

– Consider a random process 

– Let 

– joint CDF:

– Joint pdf: 

– A random process is fully specified by the collections of all the joint CDFs 

(or joint pdfs) for any n and any choice of sampling instants.

• For a continuous-time random process, there will be infinite such joint 

CDFs.
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DESCRIPTION

• Moments of time samples

– Provide a partial description of the random process

– For most practical applications it is sufficient to have a partial description.

• Mean function 

– The mean function is a deterministic function of time. 

• Variance function
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DESCRIPTION

• Example

– For a random process                                    , where A is a random variable 

with mean         and variance         . Find the mean function and variance 

function of X(t) .
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DESCRIPTION

• Autocorrelation function (ACF)

– The autocorrelation function of a random process X(t) is defined as the

– It describes the correlation of the random process in the time domain

• How are two events happened at different times related to each other.

– E.g. if there is a strong correlation between the temperature 

today and the temperature tomorrow, then we can predict 

tomorrow’s temperature by using today’s observation.

– E.g. the text in a book can be considered as a discrete random 

process

» Stochasxxx

» We can easily guess the contents in xxx by using the time 

correlation.

– is the second moment of 

17

 )()(),( 2121 tXtXEttRX 

 )(),( 1

2

11 tXEttRX  )( 1tX



DESCRIPTION

• Autocovariance function

– The autocovariance function of a random process X(t) is defined as the

–
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DESCRIPTION

• Example

– Consider a random process                                   , where A is a random 

variable with mean        and variance         . Find the autocorrelation 

function and autocovariance function.   
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DESCRIPTION

• Example

– Consider a random process                                       , where A is a random 

variable with mean        and variance         .       is uniformly distributed in

. A and     are independent.   

– Find the autocorrelation function and autocovariance function.   
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DESCRIPTION

• Example

–
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DESCRIPTION

• Discrete-time random process (random sequence)

– A discrete-time random process 

–

• E.g. 

– Joint PMF

– Joint CDF
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DESCRIPTION

• Bernoulli process

–
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DESCRIPTION

• Moments of time samples

– Provide a partial description of the random process

– For most practical applications it is sufficient to have a partial description.

• Mean function 

– The mean function is a deterministic function of time. 

• Variance function

– It is a deterministic function of time
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DESCRIPTION

• Example

– For a Bernoulli (p) process, find the mean function and variance function.
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DESCRIPTION

• Autocorrelation function of a random sequence

• Autocovariance function of a random sequence
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DESCRIPTION

• Example
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STATIONARY RANDOM PROCESS

• Stationary random process

– A random process, X(t), is stationary if the joint distribution of  any set of 

samples does not depend on the time origin. 

For any value of and      , and for any choice of  
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STATIONARY RANDOM PROCESS

• 1st order distribution

– If X(t) is a stationary random process, then the first order CDF or pdf must 

be independent of time

• The samples at different time instant have the same distribution.

– Mean:
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STATIONARY RANDOM PROCESS

• 2nd order distribution

– If X(t) is a stationary random process, then the 2nd order CDF and pdf are:

– The 2nd order distribution only depends on the time difference between the 

two samples

– Autocorrelation function

– Autocovariance function:
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STATIONARY RANDOM PROCESS

• Stationary random process

– In order to determine whether a random process is stationary, we need to 

find out the joint distribution of any group of samples

– Stationary random process  the joint distribution of any group of time 

samples is independent of the starting time

– This is a very strict requirement, and sometimes it is difficult to determine 

whether a random process is stationary. 
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STATIONARY RANDOM PROCESS

• Wide-Sense Stationary (WSS) Random Process

– A random process, X(t), is wide-sense stationary (WSS), if the following 

two conditions are satisfied

• The first moment is independent of time

• The autocorrelation function depends only on the time difference

– Only consider the 1st order and 2nd order distributions
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STATIONARY RANDOM PROCESS

• Stationary v.s. Wide-Sense Stationary

– If X(t) is stationary  X(t) is WSS

• It is not true the other way around

– Stationary is a much stricter condition. It requires the joint distribution of 

any combination of samples to be independent of the absolute starting 

time

– WSS only considers the first moment (mean is a constant) and second 

order moment (autocorrelation function depends only on the time 

difference)
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STATIONARY RANDOM PROCESS

• Example

– A random process is described by

where A is a random variable uniformly distributed between [-3, 3], B is 

an RV with zero mean and variance 4, and     is a random variable 

uniformly distributed in                        . A, B, and      are independent. 

Find the mean and autocorrelation function. Is X(t) WSS?  
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STATIONARY RANDOM PROCESS

• Autocorrelation function of a WSS random process

– is the average power of the signal X(t)

– is an even function

–

• Cauchy-Schwartz inequality 

– If               is non-periodic, then
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STATIONARY RANDOM PROCESS

• Example

– Consider a random process having an autocorrelation function

• Find the mean and variance of X(t)
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STATIONARY RANDOM PROCESS

• Example

– A random process Z(t) is

Where X(t) is a WSS random process with autocorrelation function

Find the autocorrelation function of Z(t). Is Z(t) WSS?
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STATIONARY RANDOM PROCESS

• Example

– A random process X(t) = At + B, where A is a Gaussian random variable 

with 0 mean and variance 16, and B is uniformly distributed between 0 

and 6. A and B are independent. Find the mean and auto-correlation 

function. Is it WSS?
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TWO RANDOM PROCESSES

• Two random processes

– X(t) and Y(t)

• Cross-correlation function

– The cross-correlation function between two random processes X(t) and 

Y(t) is defined as

– Two random processes are said to be uncorrelated if  for all     and  

– Two random processes are said to be orthogonal if for all     and 

• Cross-covariance function

– The cross-covariance function between two random processes X(t) and 

Y(t) is defined as
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TWO RANDOM PROCESSES

• Example

– Consider two random processes                                       and

. Are they uncorrelated?  
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TWO RANDOM PROCESSES

• Example

– Suppose signal Y(t) consists a desired signal X(t) plus noise N(t) as

Y(t) = X(t) + N(t)

The autocorrelation functions of X(t) and N(t) are:                   and                    

, respectively. The mean function of X(t) and N(t) are:            and            , 

respectively. Find the cross-correlation between X(t) and Y(t).    
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ERGODIC RANDOM PROCESS

• Time average of a signal x(t)

• Time average of a sample function of the random process

• Ensemble average (mean) of a random process 
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ERGODIC RANDOM PROCESS

• Ergodic random process

– A stationary random process is also an ergodic random process if the n-th

order ensemble average is the same as the n-th order time average.

– If a random process is ergodic, we can find the moments by performing 

time average over a single sample function.

– Ergodic is only defined for stationary random process

• If a random process is ergodic , then it must be stationary

– Not true the other way around
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ERGODIC RANDOM PROCESS 

• Example

– Consider a random process 

where A is a Gaussian RV with 0 mean and variance 4. Is it ergodic?  
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ERGODIC RANDOM PROCESS

• Mean ergodic

– A WSS random process is mean ergodic if the ensemble average is the 

same as the time average.

– Mean ergodic v.s. ergodic

• Ergodic:                                                for stationary process 

• Mean ergodic:                                       for WSS process

• If a random process is ergodic, then it must be mean ergodic

– Not true the other way around

– If a process is mean ergodic, it must be WSS

• Mean ergodic is defined for WSS process only. 
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ERGODIC RANDOM PROCESS

• Example

– Consider a random process

where A is a non-zero constant, and       is uniformly distributed between 0 

and      . Is it mean ergodic?  
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POWER SPECTRAL DENSITY

• Power spectral density (PSD)

– The distribution of the power in the frequency domain.

– For a WSS random process, the PSD is the Fourier transform of the auto-

correlation function

– The “density” of power in the frequency domain.

– The power consumption between the frequency range 
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POWER SPECTRAL DENSITY

• White noise

– Autocorrelation function

• any two samples in the time domain are uncorrelated.

– Power spectral density
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