Department of Electrical Engineering University of Arkansas

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

- Stochastic process, or, random process
 - A random variable changes with respect to time
 - Example: the temperature in the room
 - At any given moment, the temperature is random: random variable
 - The temperature (the value of the random variable) changes with respect to time.

• Stochastic process (random process)

- Recall: Random variable is a mapping from random events to real number: $X(\xi)$, where ξ is a random event
- Stochastic process is a random variable changes with time
 - Denoted as: $X(t,\xi)$
 - It is a function of random event ξ , and time *t*.
 - Recall: random variable is a function of random event ξ

- Stochastic process (random process) $X(t,\xi)$
 - Fix time: $X(t_k,\xi)$ is a random variable
 - pdf, CDF, mean, variance, moments, etc.
 - fix event: $X(t,\xi_k)$ is a deterministic time function
 - Defined as a realization of a random process

5

• Or: a sample function of a random process

• Example

- Let ξ be a Gaussian random variable with 0 mean and unit variance, then

$$X(t,\xi) = \xi \cdot \cos(2\pi f t)$$

is a random process .

- If we fix $t = t_0$, we get a Gaussian random variable $X(t_0, \xi) = \xi \cdot \cos(2\pi f t_0)$ - The pdf of $X(t_0, \xi)$ is:
- If we fix $\xi = \xi_0$, we get sample function $X(t, \xi_0) = \xi_0 \cdot \cos(2\pi f t)$
 - It is a deterministic function of time

• Stochastic process:

- A random variable changes with respect to time $X(t,\xi)$

• Sample function:

- A deterministic time function $X(t, \xi_k)$ associated with outcome ξ_k

7

• Ensemble:

- The set of all possible time functions of a stochastic process.

• Example

- Let Θ be a random variable uniformly distributed between $[-\pi, \pi]$, then $X(t, \Theta) = A\cos(2\pi f t + \Theta)$ is a random process, where A is a constant. At $t = t_0$ Find the mean and variance of $X(t_0, \Theta)$

• Example

Let Θ be a random variable uniformly distributed between [-π,π], and ξ a Gaussian random variable with 0 mean and variance σ². Then ξ cos(2πft + Θ) is a random process. ξ and Θ are independent. Find the mean and variance of the random process at t = t₀

- Continuous-time random process
 - The time is continuous

- E.g.
$$X(t,\xi) = \xi \cdot \cos(2\pi f t)$$
 $t \in R$

- Discrete-time random process
 - The time is discrete

- E.g.
$$X(n,\xi) = \xi \cdot \cos(2\pi f n)$$
 $n = 0,1,2,\Lambda$

- Continuous random process
 - At any time, $X(t_0,\xi)$ is a continuous random variable
 - E.g. $X(t,\xi) = \xi \cdot \cos(2\pi f t)$, ξ is Gaussian distributed
- Discrete random process
 - At any time, $X(t_0,\xi)$ is a discrete random variable
 - E.g. $X(t,\xi) = \xi \cdot \cos(2\pi f t)$, ξ is a Bernoulli RV

Classifications

- Continuous-time v.s. discrete-time
- Continuous v.s. discrete
- Stationary v.s. non-stationary
- Wide sense stationary (WSS) v.s. non-WSS
- Ergodic v.s. non-ergodic

• Simple notation

- Random variable: $X(\xi)$, usually denoted as X
- Random process: $X(t,\xi)$, usually denoted as X(t)

11

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

• How do we describe a random process?

- A random variable is fully characterized by its pdf or CDF.
- How do we statistically describe random process?

• E.g.
$$\Pr(a_1 < X(t_1) \le b_1, a_2 < X(t_2) \le b_2) = ?$$

 $\Pr(a < X(t_{k+1}) \le b | X(t_1) = a_1, \cdots, X(t_k) = a_k) = ?$

- We need to describe the random process in both the ensemble domain and the time domain

• Descriptions of the random process

- Joint distribution of time samples: joint pdf, joint CDF
- Moments: mean, variance, correlation function, covariance function

• Joint distribution of time samples

- Consider a random process X(t)

- Let
$$X_1 = X(t_1), X_2 = X(t_2), \cdots, X_n = X(t_n)$$

– joint CDF:

$$F_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \Pr(X_1 \le x_1,\cdots,X_n \le x_n)$$

- Joint pdf:

$$f_{X_1,\cdots,X_n}(x_1,\cdots,x_n) = \frac{d^n(X_1 \le x_1,\cdots,X_n \le x_n)}{dx_1\cdots dx_n}$$

- A random process is fully specified by the collections of all the joint CDFs (or joint pdfs) for any n and any choice of sampling instants.
 - For a continuous-time random process, there will be infinite such joint CDFs.

• Moments of time samples

- Provide a partial description of the random process
- For most practical applications it is sufficient to have a partial description.
- Mean function

$$m_X(t) = E[X(t)] = \int_{-\infty}^{+\infty} u f_{X(t)}(u) du$$

- The mean function is a deterministic function of time.
- Variance function

$$\sigma_X^2(t) = E\{[X(t) - m_X(t)]^2\} = \int_{-\infty}^{+\infty} [x - m_X(t)]^2 f_{X(t)}(x) dx$$

• Example

- For a random process $X(t) = A \cdot Cos(2\pi ft)$, where A is a random variable with mean m_A and variance σ_A^2 . Find the mean function and variance function of X(t).

• Autocorrelation function (ACF)

- The autocorrelation function of a random process X(t) is defined as the

 $R_X(t_1, t_2) = E[X(t_1)X(t_2)]$

- It describes the correlation of the random process in the time domain
 - How are two events happened at different times related to each other.
 - E.g. if there is a strong correlation between the temperature today and the temperature tomorrow, then we can predict tomorrow's temperature by using today's observation.
 - E.g. the text in a book can be considered as a discrete random process
 - » Stochasxxx
 - » We can easily guess the contents in xxx by using the time correlation.

-
$$R_X(t_1, t_1) = E[X^2(t_1)]$$
 is the second moment of $X(t_1)$

Autocovariance function

– The autocovariance function of a random process X(t) is defined as the

$$C_X(t_1, t_2) = E\{ [X(t_1) - m_X(t_1)] [X(t_2) - m_X(t_2)] \}$$
$$= E[X(t_1)X(t_2)] - m_X(t_1)m_X(t_2)]$$

$$-C_X(t,t) = \sigma_{X(t)}^2$$

• Example

- Consider a random process $X(t) = A \cdot \cos(2\pi f t)$, where A is a random variable with mean m_A and variance σ_A^2 . Find the autocorrelation function and autocovariance function.

• Example

- Consider a random process $X(t) = A \cdot \cos(2\pi f t + \Theta)$, where A is a random variable with mean m_A and variance $\sigma_A^2 \cdot \Theta$ is uniformly distributed in $[-\pi, \pi]$. A and Θ are independent.
- Find the autocorrelation function and autocovariance function.

• Example

- Given a random process X(t) with expected value $\mu_X(t)$ and autocorrelation $R_X(t,\tau)$, we can make the noisy observation Y(t) = X(t) + N(t) where N(t) is a random noise process with $\mu_N(t) = 0$ and autocorrelation $R_N(t,\tau)$. Assuming that the noise process N(t) is independent of X(t), nd the expected value and autocorrelation of Y(t).

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

- Discrete-time random process (random sequence)
 - A discrete-time random process

 $\cdots, X_{-1}, X_0, X_1, X_2, \cdots, X_n, \cdots$

- Consider a subset of m samples $\mathbf{X} = [X_{n_1}, X_{n_2}, \cdots, X_{n_m}]$ • E.g. $\mathbf{X} = [X_2, X_5, X_8, X_{10}]$
- Joint PMF

$$p_{\mathbf{X}}(x_1,\cdots,x_m) = \Pr(X_{n_1} = x_1,\cdots,X_{n_m} = x_m)$$

- Joint CDF

$$F_{\mathbf{X}}(x_1,\cdots,x_m) = \Pr(X_{n_1} \le x_1,\cdots,X_{n_m} \le x_m)$$

Bernoulli process

- A Bernoulli (p) process X_n is an independent and identically distributed (i.i.d.) random sequence in which each X_n is a Bernoulli (p) random variable.

1. Find the joint PMF of $\mathbf{X} = [X_1, \cdots, X_n]$.

2. Find the joint PMF of $\mathbf{X} = [1, 0, 0, 1, 1, 0, 0, 0, 1]$ with p = 0.3.

• Moments of time samples

- Provide a partial description of the random process
- For most practical applications it is sufficient to have a partial description.
- Mean function

$$m_X(n) = \mathbb{E}[X_n]$$

- The mean function is a deterministic function of time.

Variance function

$$\sigma_X^2(n) = \mathbb{E}[(X_n - m_X(n))^2] = \mathbb{E}[X_n^2] - m_X^2(n)$$

- It is a deterministic function of time

• Example

- For a Bernoulli (*p*) process, find the mean function and variance function.

• Autocorrelation function of a random sequence

 $R_X[m,k] = E\left[X_m X_{m+k}\right].$

• Autocovariance function of a random sequence

$$C_X[m,k] = \operatorname{Cov}\left[X_m, X_{m+k}\right]$$

 $C_X[n,k] = R_X[n,k] - \mu_X(n)\mu_X(n+k).$

• Example

The input to a digital filter is an iid random sequence ..., $X_{-1}, X_0, X_1, ...$ with $E[X_i] = 0$ and $Var[X_i] = 1$. The output is a random sequence ..., $Y_{-1}, Y_0, Y_1, ...$, related to the input sequence by the formula

 $Y_n = X_n + X_{n-1} \qquad \text{for all integers } n. \tag{10.38}$

Find the expected value $E[Y_n]$ and autocovariance function $C_Y[m, k]$.

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

• Stationary random process

- A random process, X(t), is stationary if the joint distribution of any set of samples does not depend on the time origin.

$$f_{X(t_1),...,X(t_m)}(x_1,...,x_m) = f_{X(t_1+\tau),...,X(t_m+\tau)}(x_1,...,x_m)$$

For any value of τ and m, and for any choice of t_1, t_2, \cdots, t_m

• 1st order distribution

- If X(t) is a stationary random process, then the first order CDF or pdf must be independent of time

$$\begin{aligned} F_{X(t)}(x) &= F_{X(t+\tau)}(x), & \forall t, \tau \\ f_{X(t)}(x) &= f_{X(t+\tau)}(x), & \forall t, \tau \end{aligned}$$

- The samples at different time instant have the same distribution.
- Mean:
 - $E[X(t)] = E[X(t+\tau)] =$

For a stationary random process, the mean is independent of time

• 2nd order distribution

- If X(t) is a stationary random process, then the 2^{nd} order CDF and pdf are:

$$\begin{split} F_{X(t)X(t+\tau)}(x_1, x_2) &= F_{X(0)X(\tau)}(x_1, x_2), \\ f_{X(t)X(t+\tau)}(x_1, x_2) &= f_{X(0)X(\tau)}(x_1, x_2), \\ \end{split} \qquad \forall t, \tau \end{split}$$

- The 2nd order distribution only depends on the time difference between the two samples
- Autocorrelation function

$$R_X(t_1, t_2) =$$

- Autocovariance function:

For a stationary random process, the autocorrelation function and autocovariance function only depends on the time difference: $t_2 - t_1$

• Stationary random process

- In order to determine whether a random process is stationary, we need to find out the joint distribution of any group of samples
- Stationary random process → the joint distribution of any group of time samples is independent of the starting time
- This is a very strict requirement, and sometimes it is difficult to determine whether a random process is stationary.

- Wide-Sense Stationary (WSS) Random Process
 - A random process, X(t), is wide-sense stationary (WSS), if the following two conditions are satisfied
 - The first moment is independent of time

 $E[X(t)] = E[X(t+\tau)] = m_X$

• The autocorrelation function depends only on the time difference

 $E[X(t)X(t+\tau)] = R_X(\tau)$

- Only consider the 1st order and 2nd order distributions

- Stationary v.s. Wide-Sense Stationary
 - If X(t) is stationary $\rightarrow X(t)$ is WSS
 - It is not true the other way around
 - Stationary is a much stricter condition. It requires the joint distribution of any combination of samples to be independent of the absolute starting time

$$f_{X(t_1),...,X(t_m)}(x_1,...,x_m) = f_{X(t_1+\tau),...,X(t_m+\tau)}(x_1,...,x_m)$$

 WSS only considers the first moment (mean is a constant) and second order moment (autocorrelation function depends only on the time difference)

$$E[X(t)] = E[X(t+\tau)] = m_X$$
$$E[X(t)X(t+\tau)] = R_Y(\tau)$$

• Example

- A random process is described by

$$X(t) = A + B\cos(2\pi f t + \Theta)$$

where A is a random variable uniformly distributed between [-3, 3], B is an RV with zero mean and variance 4, and Θ is a random variable uniformly distributed in $[-\pi/2,3\pi/2]$. A, B, and Θ are independent. Find the mean and autocorrelation function. Is X(t) WSS?

• Autocorrelation function of a WSS random process

 $R_X(\tau) = E[X(t)X(t+\tau)]$

- $R_X(0) = E[X^2(t)]$ is the average power of the signal X(t)
- $R_X(\tau) = E[X(t)X(t+\tau)] = E[X(t+\tau)X(t)] = R_X(-\tau)$ is an even function
- $|R_{X}(\tau)| \le R_{X}(0)$
 - Cauchy-Schwartz inequality $E[XY]^2 \leq E[X^2]E[Y^2]$,
- If $R_X(\tau)$ is non-periodic, then

$$\lim_{\tau\to\infty}R_X(\tau)=m_X^2$$

• Example

- Consider a random process having an autocorrelation function

$$R_X(\tau) = 3\frac{\tau^2 + 4}{\tau^2 + 3}$$

• Find the mean and variance of X(t)

• Example

- A random process Z(t) is

 $Z(t) = X(t) + X(t + t_0)$

Where X(t) is a WSS random process with autocorrelation function

 $R_Z(\tau) = \exp(-\tau^2)$

Find the autocorrelation function of Z(t). Is Z(t) WSS?

• Example

A random process X(t) = At + B, where A is a Gaussian random variable with 0 mean and variance 16, and B is uniformly distributed between 0 and 6. A and B are independent. Find the mean and auto-correlation function. Is it WSS?

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

TWO RANDOM PROCESSES

- Two random processes
 - X(t) and Y(t)
- Cross-correlation function

 $R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)]$

- Two random processes are said to be uncorrelated if for all t_1 and t_2

 $E[X(t_1)Y(t_2)] = E[X(t_1)]E[Y(t_2)]$

- Two random processes are said to be orthogonal if for all t_1 and t_2

$$R_{XY}(t_1,t_2)=0$$

- Cross-covariance function
 - The cross-covariance function between two random processes X(t) and Y(t) is defined as

$$C_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)] - m_X(t_1)m_X(t_2)$$

TWO RANDOM PROCESSES

• Example

- Consider two random processes $X(t) = \cos(2\pi f t + \Theta)$ and $Y(t) = \sin(2\pi f t + \Theta)$. Are they uncorrelated?

TWO RANDOM PROCESSES

• Example

- Suppose signal Y(t) consists a desired signal X(t) plus noise N(t) as Y(t) = X(t) + N(t)

The autocorrelation functions of X(t) and N(t) are: $R_{XX}(t_1, t_2)$ and $R_{NN}(t_1, t_2)$, respectively. The mean function of X(t) and N(t) are: $m_X(t)$ and $m_N(t)$, respectively. Find the cross-correlation between X(t) and Y(t).

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

• Time average of a signal *x*(*t*)

$$\langle x(t) \rangle_T = \frac{1}{T} \int_0^T x(t) dt$$

• Time average of a sample function of the random process $x(t) = X(t, \xi_0)$

$$\left\langle X(t,\xi_0)\right\rangle_T = \frac{1}{T}\int_0^T X(t,\xi_0)dt$$

• Ensemble average (mean) of a random process $X(t,\xi_0)$

• Ergodic random process

- A stationary random process is also an ergodic random process if the n-th order ensemble average is the same as the n-th order time average.

$$\langle X^n(t) \rangle = E \Big[X^n(t) \Big]$$

$$\langle x^n(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T x^n(t) dt$$

$$E[X^{n}(t)] = \int_{-\infty}^{+\infty} x^{n} f_{X(t)}(x) dx$$

- If a random process is ergodic, we can find the moments by performing time average over a single sample function.
- Ergodic is only defined for stationary random process
 - If a random process is ergodic , then it must be stationary
 - Not true the other way around

• Example

- Consider a random process X(t) = Awhere A is a Gaussian RV with 0 mean and variance 4. Is it ergodic?

- Mean ergodic
 - A WSS random process is mean ergodic if the ensemble average is the same as the time average.

$$\langle X(t) \rangle = E[X(t)]$$

- Mean ergodic v.s. ergodic
 - Ergodic: $\langle X^n(t) \rangle = E[X^n(t)]$ for stationary process
 - Mean ergodic: $\langle X(t) \rangle = E[X(t)]$ for WSS process
 - If a random process is ergodic, then it must be mean ergodic
 Not true the other way around
- If a process is mean ergodic, it must be WSS
 - Mean ergodic is defined for WSS process only.

• Example

- Consider a random process $X(t) = A\cos(2\pi f t + \Theta)$ where A is a non-zero constant, and Θ is uniformly distributed between 0 and π . Is it mean ergodic?

OUTLINE

- Definition of stochastic process (random process)
- Description of continuous-time random process
- Description of discrete-time random process
- Stationary and non-stationary
- Two random processes
- Ergodic and non-ergodic random process
- Power spectral density

POWER SPECTRAL DENSITY

• Power spectral density (PSD)

- The distribution of the power in the frequency domain.
- For a WSS random process, the PSD is the Fourier transform of the autocorrelation function

$$S_X(f) = F[R_X(\tau)]$$

- The "density" of power in the frequency domain.
- The power consumption between the frequency range $[f_1, f_2]$:

POWER SPECTRAL DENSITY

• White noise

- Autocorrelation function

$$R_x(\tau) = \frac{N_0}{2} \delta(\tau)$$

- any two samples in the time domain are uncorrelated.
- Power spectral density

$$S_x(f) = \int_{-\infty}^{+\infty} \frac{N_0}{2} \delta(\tau) d\tau = \frac{N_0}{2}$$

