Department of Electrical Engineering University of Arkansas

ELEG 3143 Probability & Stochastic Process Ch. 3 Continuous Random Variables

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV

• Continuous RV

- If a random variable can take an unaccountable number of values, then the random variable is a continuous random variable.
- Examples of continuous RV
 - The daily average temperature
 - The expected lifetime of a computer
 - The amplitude of noise in an electronic component
 - •

- Cumulative distribution function (distribution function)
 - The cumulative distribution function (CDF) of a continuous RV is

 $F_X(x) = \Pr(X \le x)$

- The probability that the RV *X* is smaller than or equal to *x*
- Recall: the CDF of a discrete RV Y is $F_Y(y) = \Pr(Y \le y)$

• Properties of CDF

$$0 \le F_X(x) \le 1$$

$$F_X(-\infty)=0$$

$$F_X(\infty) = 1$$

$$\Pr(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1)$$

 $F_X(x)$ is a non-decreasing function of x

• Example

 A particular random variable has a probability distribution function given by

$$F_X(x) = \begin{cases} 1 - e^{-2x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- What is the probability that $X \le 0.25$
- What is the probability that X > 0.5
- What is the probability that $0.25 < X \le 0.5$

• Probability density function (pdf)

$$f(x) = \frac{dF(x)}{dx}$$

- The "density" of probability
- Review: differentiation

$$\frac{dF(x)}{dx} = \lim_{\Delta \to 0} \frac{F(x + \Delta) - F(x)}{\Delta}$$

– Interpretation:

$$f(x) \approx \frac{P(x < X \le x + \Delta)}{\Delta}$$

$$P\{x < X \le x + \Delta\} = f(x)\Delta$$

$$f_X(x)$$

• Relationship between pdf and CDF

$$f_X(x) = \frac{dF_X(x)}{dx} \qquad \qquad F_X(x) = \int_{-\infty}^x f_X(y) dy$$

-
$$\Pr(X \le a) = F_X(a) = \int_{-\infty}^a f_X(y) dy$$

$$\Pr(X \le b) = F_X(b) = \int_{-\infty}^{b} f_X(y) dy$$

$$\Pr(a < X \le b) = F_X(b) - F_X(a) = \int_a^b f_X(y) dy$$

• finding the area under the integrand

$$\int_{a}^{b} f_{X}(y) dy \approx \sum f_{X}(y_{i}) \Delta$$

• Properties of pdf

 $f(x) \ge 0$

$$P\{a < X \le b\} = \int_{a}^{b} f(x) dx$$

$$\int_{-\infty}^{b} f(x) dx = F(b)$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

• Example

- The pdf of a RV X has the form $f(x) = 5e^{-ax}u(x)$
 - The value of *a*
 - the probability that $X \le 2$
 - The probability that $1 < X \le 2$

OUTLINE

Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV

• Uniform distribution

A random variable X is said to be uniformly distributed over the interval (a, b) if its pdf is given by

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a < x \le b\\ 0, & \text{otherwise} \end{cases}$$

• The RV has equal probability of being any number inside (*a*, *b*)

- Uniform distribution
 - CDF of a uniform RV

• Example

- A continuous RV X is uniformly distributed between (3, 8). Find the following probability
 - $\Pr(4 < X \le 5)$
 - $\Pr(2 < X \le 5)$
 - $\Pr(2 < X \le 9)$

• Exponential RV

- The pdf of an exponential RV with parameter $\lambda > 0$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- The CDF of an exponential RV

• Normal RV (Gaussian RV)

- A Gaussian RV X with parameters m and σ^2

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right]$$

• Normal RV (Gaussian RV)

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right]$$

OUTLINE

Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV

MOMENTS: DISCRETE RV

• The expected value, or mean, of a continuous RV, *X*, is

 $E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$

- Recall: discrete RV $E(X) = \sum_{x_i} x_i p_X(x_i)$
- Also known as: expected value, mean, average, first moment
- Interpretation
 - The *weighted average* of the random variable
 - Recall: integration is an extreme case of summation.
- Also denoted as

$$E(X) = \overline{X} = m_X$$

MOMENTS: CONTINOUS RV

• Example

- The mean of an RV X uniformly distributed in (a, b)

MOMENTS: CONTINOUS RV

• Example

– The mean of an exponential RV with parameter λ

MOMENTS: CONTINUOUS RV

• Expected value of any function of X

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x) f_X(x) dx$$

- Recall: discrete RV $E[g(X)] = \sum_{x} g(x_i) p_X(x_i)$
- E(X): the expectation operator
- The variable of the expectation operator must be a random variable
 - X is an RV
 - g(X) is an RV

Also denoted as

$$E[g(X)] = \overline{g(X)}$$

MOMENTS: CONTINUOUS RV

Variance

- The variance of a continuous RV X is

$$\operatorname{Var}(X) = \sigma_X^2 = E\left[(X - m_X)^2\right] = \int_{-\infty}^{+\infty} (x - m_X)^2 f_X(x) dx$$

- Recall: discrete RV $\sigma_X^2 = \sum (x_i m_X)^2 p_X(x_i)$
- Also called: the 2^{nd} central moment of X
- Standard deviation: σ_x

- Physical interpretation
 - How far away the random variable is from its expected value

• Properties of variance

$$\sigma_X^2 = E[X^2] - m_X^2$$

$$\operatorname{Var}[aX+b] = a^2 \operatorname{Var}[X]$$

MOMENTS: CONTINUOUS RV

• The *n*-th moment of the random variable X

 $E[X^n] = \int_{-\infty}^{+\infty} x^n f_X(x) dx$

- 1^{st} moment: E[X] mean
- 2^{nd} moment: $E[X^2]$
- The n-th central moment of the random variable X

$$E[(X - m_X)^n] = \int_{-\infty}^{+\infty} (x - m_X)^n f_X(x) dx$$

- 1st central moment:
$$E[X - m_X] =$$

- 2nd central moment: $E[(X - m_X)^2]$ 2 variat

- $2^{\text{normal moment:}} E[(X m_X)^2] = \sigma_X^2 \text{ variance}$
- The combination of all the moments, n = 1, 2,, gives a complete description of the random variable

MOMENTS: CONTINUOUS RV

• Example

- Find the variance of an RV X uniformly distributed on (a, b)

MOMENTS

• Example

- Consider a random variable $Y = A\cos(2\pi f + \Theta)$, where A, f are constants, and Θ is uniformly distributed in $[0,2\pi]$. Find the expected value of *Y*.

OUTLINE

Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV

• Normal RV (Gaussian RV)

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp\left[-\frac{(x-m)^2}{2\sigma^2}\right]$$

- The mean and variance are

$$\mathbb{E}[X] = m$$

$$\operatorname{Var}[X] = \sigma^2$$

- The Gaussian RV is completely determined by its first 2 moments.
 - Not true for other RVs.

Galton board

- A video demonstration

https://www.youtube.com/watch?v=xDIyAOBa_yU

- Probability density function (pdf) v.s. Histogram
 - years worked of 1820 employees in a cereal factory

- When the bin width goes to 0, histogram \rightarrow pdf

• Notation of Gaussian RV

– A Gaussian RV X with mean m and variance σ^2 is denoted as

 $X \sim \mathcal{N}(m, \sigma^2)$

- Standard Gaussian RV
 - A Gaussian RV with

$$m = 0, \sigma^2 = 1$$

Denoted as

 $X \sim \mathcal{N}(0, 1)$

• A linear transformation of a Gaussian RV is still Gaussian

– Consider $X \sim \mathcal{N}(m, \sigma^2)$. Define a new RV

Y = aX + b

- Then Y is still Gaussian distributed

$$Y \sim \mathcal{N}(am + b, a^2 \sigma^2)$$

Converting a Gaussian RV to a standard Gaussian RV
 If

$$X \sim \mathcal{N}(m, \sigma^2)$$

- Then
$$\frac{X-m}{\sigma} \sim \mathcal{N}(0,1)$$

• CDF of standard Gaussian random variable

– Let $Z \sim \mathcal{N}(0, 1)$ be a standard Gaussian random variable, then the CDF of Z is

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^2/2} \, du.$$

• Complementary CDF (CCDF) of standard Gaussian random variable

- Let
$$Z \sim \mathcal{N}(0,1)$$

$$Q(z) = P[Z > z] = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-u^{2}/2} du = 1 - \Phi(z).$$

Q-function table •

$$Q(z)=\int_z^\infty \frac{1}{\sqrt{2\pi}}e^{-y^2/2}dy$$

ā	UNIVERSITY OF
1. Carlor 1.	AIXIXAINGAG.

Table 1: Values of Q(x) for $0 \le x \le 9$

x	Q(x)	x	Q(x)	x	Q(x)	x	Q(x)	35
0.00	0.5	2.30	0.010724	4.55	2.6823×10^{-6}	6.80	5.231×10^{-12}	
0.05	0.48006	2.35	0.0093867	4.60	2.1125×10^{-6}	6.85	3.6925×10^{-12}	
0.10	0.46017	2.40	0.0081975	4.65	1.6597×10^{-6}	6.90	$2.6001{\times}10^{-12}$	
0.15	0.44038	2.45	0.0071428	4.70	1.3008×10^{-6}	6.95	1.8264×10^{-12}	
0.20	0.42074	2.50	0.0062097	4.75	1.0171×10^{-6}	7.00	1.2798×10^{-12}	
0.25	0.40129	2.55	0.0053861	4.80	7.9333×10^{-7}	7.05	8.9459×10^{-13}	
0.30	0.38209	2.60	0.0046612	4.85	6.1731×10^{-7}	7.10	6.2378×10^{-13}	
0.35	0.36317	2.65	0.0040246	4.90	4.7918×10^{-7}	7.15	4.3389×10^{-13}	
0.40	0.34458	2.70	0.003467	4.95	3.7107×10^{-7}	7.20	3.0106×10^{-13}	
0.45	0.32636	2.75	0.0029798	5.00	2.8665×10^{-7}	7.25	2.0839×10^{-13}	
0.50	0.30854	2.80	0.0025551	5.05	2.2091×10^{-7}	7.30	1.4388×10^{-13}	
0.55	0.29116	2.85	0.002186	5.10	1.6983×10^{-7}	7.35	9.9103×10^{-14}	
0.60	0.27425	2.90	0.0018658	5.15	1.3024×10^{-7}	7.40	6.8092×10^{-14}	
0.65	0.25785	2.95	0.0015889	5.20	9.9644×10^{-8}	7.45	4.667×10^{-14}	
0.70	0.24196	3.00	0.0013499	5.25	7.605×10^{-8}	7.50	3.1909×10^{-14}	
0.75	0.22663	3.05	0.0011442	5.30	5.7901×10^{-8}	7.55	2.1763×10^{-14}	
0.80	0.21186	3.10	0.0009676	5.35	4.3977×10^{-8}	7.60	1.4807×10^{-14}	
0.85	0.19766	3.15	0.00081635	5.40	3.332×10^{-8}	7.65	1.0049×10^{-14}	
0.90	0.18406	3.20	0.00068714	5.45	2.5185×10^{-8}	7.70	6.8033×10^{-15}	
0.95	0.17106	3.25	0.00057703	5.50	1.899×10^{-8}	7.75	4.5946×10^{-15}	
1.00	0.15866	3.30	0.00048342	5.55	1.4283×10^{-8}	7.80	3.0954×10^{-15}	
1.05	0.14686	3.35	0.00040406	5.60	1.0718×10^{-8}	7.85	2.0802×10^{-15}	
1.10	0.13567	3.40	0.00033693	5.65	8.0224×10^{-9}	7.90	1.3945×10^{-15}	
1.15	0.12507	3.45	0.00028029	5.70	5.9904×10^{-9}	7.95	9.3256×10^{-16}	
1.20	0.11507	3.50	0.00023263	5.75	4.4622×10^{-9}	8.00	6.221×10^{-16}	
1.25	0.10565	3.55	0.00019262	5.80	3.3157×10^{-9}	8.05	4.1397×10^{-16}	
1.30	0.0968	3.60	0.00015911	5.85	2.4579×10^{-9}	8.10	2.748×10^{-16}	
1.35	0.088508	3.65	0.00013112	5.90	1.8175×10^{-9}	8.15	1.8196×10^{-16}	
1.40	0.080757	3.70	0.0001078	5.95	1.3407×10^{-9}	8.20	1.2019×10^{-16}	
1.45	0.073529	3.75	8.8417×10^{-5}	6.00	9.8659×10^{-10}	8.25	7.9197×10^{-17}	
1.50	0.066807	3.80	7.2348×10^{-5}	6.05	7.2423×10^{-10}	8.30	5.2056×10^{-17}	
1.55	0.060571	3.85	5.9059×10^{-5}	6.10	5.3034×10^{-10}	8.35	3.4131×10^{-17}	
1.60	0.054799	3.90	4.8096×10^{-5}	6.15	3.8741×10^{-10}	8.40	2.2324×10^{-17}	
1.65	0.049471	3.95	3.9076×10^{-6}	6.20	2.8232×10^{-10}	8.45	1.4565×10^{-11}	
1.70	0.044565	4.00	3.1671×10^{-6}	6.25	2.0523×10^{-10}	8.50	9.4795×10^{-18}	
1.75	0.040059	4.05	2.5609×10 °	6.30	1.4882×10^{-10}	8.55	0.1544×10^{-10}	
1.80	0.03593	4.10	2.0658×10^{-5}	0.35	1.0766×10^{-10}	8.60	3.9858×10^{-10}	
1.85	0.032157	4.15	1.0024×10^{-5}	6.40	7.7688×10 ⁻¹¹	8.65	2.575×10^{-18}	
1.90	0.028717	4.20	1.3340×10^{-5}	0.45	0.0925×10^{-11}	8.70 0.7E	1.0594×10^{-18}	
1.95	0.025588	4.25	1.0089×10 °	0.00	4.010×10 ···	0.75	6.8408×10-19	
2.00	0.02275	4.30	6.0399×10 °	0.55	2.8/09×10 11	8.80	0.8408×10 ⁻¹⁹	
2.00	0.020182	4.30	0.8009×10 °	0.00	2.0008×10	8.80	4.3/0×10	
2.10	0.017804	4.40	0.4120×10 °	0.00	1.4000×10^{-11}	8.90 8.0E	2.7923×10 ⁻¹⁰	
2.10	0.015778	4.40	4.2930×10 °	0.70 6.75	1.0421×10^{-12}	8.95	1.1114×10 ⁻¹⁰	
2.20	0.013903	4.50	5.39(1×10 °	0.75	7.3923×10	9.00	1.1280×10	
2.25	0.012224							

• CDF of Gaussian Random Variable

– Let $\, X \sim \mathcal{N}(m, \sigma^2)\,$, then the CDF of X is

$$F_X(x) = \Phi\left(\frac{x-m}{\sigma}\right)$$

• Symmetric property of the Gaussian-Q function $\Phi(z)$

 $\Phi(-z) = 1 - \Phi(z).$

• Example

- Consider $~X \sim \mathcal{N}(m,\sigma^2)$, what are the probability for the following events
 - $X \in [m \sigma, m + \sigma]$
 - $X \in [m 2\sigma, m + 2\sigma]$
 - $X \in [m 3\sigma, m + 3\sigma]$

$$\Phi(1)=0.8413, \quad \Phi(2)=0.97725, \quad \Phi(3)=1.35\times 10^{-3}$$
 Niversity of

• Example

- Consider a random variable $X \sim \mathcal{N}(1, 4)$. Find the following probabilities
 - $\Pr(X \le -1)$
 - $\Pr(X > 3)$
 - $\Pr(-1 < X \le 3)$

• Example

- In a digital communication system the probability of a binary error is $P_e = Q(\sqrt{\gamma})$, where γ is the signal-to-noise ratio (SNR). If we want $P_e \leq 10^{-4}$, what is the minimum γ ?

OUTLINE

Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV

- Example
 - X is an RV with pdf $f_X(x)$. Let Y = a X + b, where a and b are constants. What is the pdf of Y?

• Example

– If X is a Gaussian RV with mean 0 and variance 1. Find the pdf of

 $Y = \sigma X + m$

• Example

- If X is a Gaussian RV with mean 0 and variance 1. Find the pdf of $Y = X^2$

• Example

– Let X be an exponential RV with parameter $\lambda = 2$. Find the pdf of $Y = X^2$

