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• Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV



CONTINUOUS RV

• Continuous RV

– If a random variable can take an unaccountable number of values, then the 

random variable is a continuous random variable. 

– Examples of continuous RV

• The daily average temperature 

• The expected lifetime of a computer

• The amplitude of noise in an electronic component

• ……
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CONTINUOUS RV

• Cumulative distribution function (distribution function)

– The cumulative distribution function (CDF) of a continuous RV is

• The probability that the RV X is smaller than or equal to x

– Recall: the CDF of a discrete RV Y is
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CONTINUOUS RV

• Properties of CDF 
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CONTINUOUS RV

• Example

– A particular random variable has a probability distribution function given 

by

• What is the probability that 

• What is the probability that 

• What is the probability that 
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CONTINUOUS RV

• Probability density function (pdf)
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– The “density” of probability

– Review: differentiation
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CONTINUOUS RV

• Relationship between pdf and CDF

–

– Review: integration

• finding the area under the integrand
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CONTINUOUS RV

• Properties of pdf
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CONTINUOUS RV

• Example

– The pdf of a RV X has the form

• The value of a

• the probability that 

• The probability that 
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• Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV



CONTINUOUS RV

• Uniform distribution

– A random variable X is said to be uniformly distributed over the interval 

(a, b) if its pdf is given by

• The RV has equal probability of being any number inside (a, b)

12











otherwise,0

,
1

)(
bxa

abxf X

ab 

1

a b



CONTINUOUS RV

• Uniform distribution

– CDF of a uniform RV
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CONTINUOUS RV

• Example

– A continuous RV X is uniformly distributed between (3, 8). Find the 

following probability

•

•

•
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CONTINUOUS RV

• Exponential RV

– The pdf of an exponential RV with parameter 

– The CDF of an exponential RV
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CONTINUOUS RV

16

• Normal RV (Gaussian RV)

– A Gaussian RV X with parameters           and  
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CONTINUOUS RV

• Normal RV (Gaussian RV)
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• Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV



MOMENTS: DISCRETE RV

• The expected value, or mean, of a continuous RV, X,  is

– Recall: discrete RV 

– Also known as: expected value, mean, average, first moment

– Interpretation

• The weighted average of the random variable

• Recall: integration is an extreme case of summation.

– Also denoted as 
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MOMENTS: CONTINOUS RV

• Example

– The mean of an RV X uniformly distributed in (a, b)
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MOMENTS: CONTINOUS RV

• Example

– The mean of an exponential RV with parameter 
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MOMENTS: CONTINUOUS RV

• Expected value of any function of X

– Recall: discrete RV

– E(X): the expectation operator

– The variable of the expectation operator must be a random variable

• X is an RV

• g(X) is an RV

– Also denoted as
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MOMENTS: CONTINUOUS RV

• Variance

– The variance of a continuous RV X is

– Recall: discrete RV 

– Also called: the 2nd central moment of X

– Standard deviation: 

– Physical interpretation

• How far away the random variable is from its expected value
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MOMENTS: CONTINUOUS RV

• Properties of variance

–

–
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MOMENTS: CONTINUOUS RV

• The n-th moment of the random variable X

– 1st moment:                 mean

– 2nd moment: 

• The n-th central moment of the random variable X

– 1st central moment:

– 2nd central moment:                                     variance 

• The combination of all the moments, n = 1, 2, …., gives a complete 

description of the random variable
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MOMENTS: CONTINUOUS RV

• Example

– Find the variance of an RV X uniformly distributed on (a, b) 
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MOMENTS

• Example

– Consider a random variable                                  , where A, f are 

constants, and       is uniformly distributed in              . Find the expected 

value of Y.   
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• Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV



GAUSSIAN RV
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• Normal RV (Gaussian RV)
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– The mean and variance are

– The Gaussian RV is completely determined by its first 2 moments.

– Not true for other RVs.



GAUSSIAN RV

• Galton board

– A video demonstration
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GAUSSIAN RV

• Probability density function (pdf) v.s. Histogram

– years worked of 1820 employees in a cereal factory

– When the bin width goes to 0, histogram  pdf
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GAUSSIAN RV

• Notation of Gaussian RV

– A Gaussian RV X with mean        and variance        is denoted as

• Standard Gaussian RV

– A Gaussian RV with

– Denoted as
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GAUSSIAN RV

• A linear transformation of a Gaussian RV is still Gaussian

– Consider                              . Define a new RV 

– Then Y is still Gaussian distributed 

• Converting a Gaussian RV to a standard Gaussian RV

– If 

– Then 
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GAUSSIAN RV

• CDF of standard Gaussian random variable

– Let                       be a standard Gaussian random variable, then the CDF 

of Z is  

• Complementary CDF (CCDF) of standard Gaussian random 

variable

– Let 
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GAUSSIAN RV

• Q-function table
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GAUSSIAN RV

• CDF of Gaussian Random Variable

– Let                                 , then the CDF of X is  
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GAUSSIAN RV

• Symmetric property of the Gaussian-Q function 
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GAUSSIAN RV

• Example

– Consider                                   , what are the probability for the following 

events

•

•

•
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GAUSSIAN RV

• Example

–
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GAUSSIAN RV

• Example

–
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• Continuous Random Variable

• Family of continuous RV

• Moments of Continuous RV

• Gaussian RV

• Functions of one RV



FUNCTIONS OF ONE RV

• Example

– X is an RV with pdf . Let Y = a X + b, where a and b are 

constants. What is the pdf of Y?  
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FUNCTIONS OF ONE RV

• Example

– If X is a Gaussian RV with mean 0 and variance 1. Find the pdf of  
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FUNCTIONS OF ONE RV

• Example

– If X is a Gaussian RV with mean 0 and variance 1.  Find the pdf of  
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FUNCTIONS OF ONE RV

• Example

– Let X be an exponential RV with parameter            . Find the pdf of  
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