Department of Electrical Engineering University of Arkansas

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

APPLICARTIONS

• Why probability?

- Most real world events have uncertain (or random) outcomes

- flipping a coin
- Tossing dices
- Football games
- Blackjack
- Expected lifetime of iPhone
- The actual resistance of a 100 Ohm resistor
- •
- How do we characterize these random events?
- Can we predict the outcome of a random event?

APPLICATIONS

• Probability Theory

- provides a complete set of mathematical tools and theories that can accurately and precisely describe the statistical behaviors of the random phenomenon.
- It is a branch of Mathematics
- It has a wide rang of applications to Engineers.

APPLICATIONS

• Random input signals

- The input for a system might be random
 - E.g. the number of vehicles passing through a certain check points as an input to a traffic control system (e.g. duration of traffic lights)
 - E.g. temperature fluctuations as an input to a heating system
 - E.g. Music signals as an input to your stereo system

Random system characteristics

- The system itself has random characteristics
 - E.g. The components inside a system has random values
 - A 100 Ohm resistor might have an actual value of 101 Ohm
 - E.g. Noise: random electrical disturbance caused by the random movement of electronics
 - It is present at all electrical systems

APPLICATIONS

• System reliability

- What is the expected life cycle of a given system?
- What is the probability of failure of a system?
 - Warranty duration, insurance policy, etc.

Random sampling

- It might be too costly to inspect every single elements
- Only sample a small population, then deduce the general behavior from the sample results
 - E.g. survey
 - E.g. product inspection for quality control
- How to design the random sampling process?

Computer simulation

- A cost effective and efficient way to test the performance of a system
- Random inputs, random system parameters (e.g. random component value, random disturbance, ...)

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

• Set

- A collection of elements
- Example: $E = \{\alpha_1, \alpha_2, \Lambda, \alpha_n\}$
 - *E* is a set
 - α_m is an element of the set *E*
- A subset of E is any set all of whose elements are also elements of E
 - Example: $E = \{1, 2, 3, 4, 5, 6\}$
 - $F = \{1,3,6\}$ is a subset of E, $F \subset E$
 - $G = \{1\}$ is a subset of E, $G \subset E$
 - Any set is a subset of itself $E \subset E$
- Empty set: ϕ
 - A set that does not have any element
 - Empty set is a subset of any set $\phi \subset E$
- Space S: the largest set of interests for a given application
 - E.g. toss a coin, $S = \{H, T\}$
 - E.g. throw a die, $S = \{1, 2, 3, 4, 5, 6\}$

SET THEORY: VENN DIAGRAM

• Venn diagram

- A geometric representation, where the space S is represented by a square and the sets are represented by closed plane figures inside the square.
- E.g. $C \subset B \subset A$

- If $A \subset B$ and $B \subset A$, then A = B

• Union (sum)

- The union of two sets A and B is a set consisting of all the elements from A or B or both
- Denoted as $A \cup B$
- Associate law
 - $A \cup B \cup C = (A \cup B) \cup C = A \cup (B \cup C)$
- Commutative law
 - $A \cup B = B \cup A$
- Properties
 - $A \cup A =$
 - $A \cup S =$
 - $A \cup \phi =$
 - If $A \subset B$, $A \cup B =$

• Intersection (product)

- The intersection of two sets is the set consisting of all the elements from both sets.
- Denoted as $A \cap B$
- Associative law

 $A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$

- Commutative law

 $A\cap B=B\cap A$

- Properties
 - $A \cup A =$
 - $A \cup S =$
 - $A \cup \phi =$

if $A \subset B$, $A \cap B =$

- Mutually exclusive (disjoint)

A and B are mutually exclusive if $A \cap B = \phi$

• Intersection (Cont'd)

- $A \cap B \cap C = (A \cap B) \cap C = A \cap (B \cap C)$
- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- Complement
 - The complement of set *A* is a set containing all the elements of *S* that are not in *A*.
 - Denoted as A^c
 - Properties

$$\phi^{c} =$$

$$S^{c} =$$

$$(A^{c})^{c} =$$

$$A \cup A^{c} =$$

$$A \cap A^{c} =$$

• Complement (Cont'd)

- If $A \subset B$, then $B^c = A^c$

- DeMorgan's Laws

 $(A \cup B)^c = A^c \cap B^c$

 $(A \cap B)^c = A^c \cup B^c$

• Difference

- The difference of two sets, *A*-*B*, is a set consisting of the elements of A that are not in B.

 $A - B = A \cap B^c$

– Examples

$$(A-B) \cup B =$$
$$(A-B) \cap B =$$
$$(A-B) \cap A =$$

$$A - \phi =$$
$$A - S =$$
$$S - A =$$

• Example

$$- S = \{1, 2, 3, 4, 5, 6\}$$

- $A = \{2, 4, 6\}, B = \{1, 2, 3, 4\}, C = \{1, 3, 5\}$

 $(A \cup B) \cap C =$ $(A \cup B)^{c} =$ $(A \cap B)^{c} =$ $(A - B) \cap B =$ $(A \cup B) \cap (B - A) =$

• Example

- If A and B are subset of the same space S
 - Simplify the following notation

 $(A \cap B) \cup (A - B) =$

 $A^c \cap (A-B) {=}$

 $(A \cap B) \cap (A \cup B) =$

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

• Experiment:

- An *action* that results in an *outcome*.
- Random experiment
 - An experiment in which the outcome is *uncertain* before the experiment is performed.
- Sample space S: the set of all possible outcomes of a random experiment
 - Examples:
 - Flipping a coin

 $- S = \{ H, T \}$

• Flipping two coins

 $- S = \{(H, H), (H, T), (T, H), (T, T)\}$

• Throwing a die

$$- S = \{1, 2, 3, 4, 5, 6\}$$

• Lifetime of a car

 $-S = [0, \infty)$

• Outcome: each element in the sample space

- **Random events:** any subset *E* of the sample space *S*
 - E.g. throwing a die
 - $E1 = \{3\}$: the event that 3 appears
 - $E2 = \{2, 4, 6\}$: the event that an even number appears.
 - Elementary random event:
 - An elementary event is one for which there is only one element in the event
 - E.g. flipping a coin, {H} is an elementary event
 - E.g. tossing a dice, {4} is an elementary event
 - E.g. measuring a voltage, $\{2.37\}$ Volt is an elementary event
 - Composite event
 - An event that might have several possible outcomes
 - E.g. tossing a die, "even" is a composite event, it includes the elementary outcomes {2, 4, 6}
 - E.g. measuring a voltage, "greater than 0" is a composite event, in includes all the elementary outcomes $(0, \infty)$

• Trial

- A single performance of an experiment
- Example: A coin is tossed 3 times, with outcomes H, H, T \rightarrow 3 trials.
 - The 1^{st} trial results in H, the 2^{nd} trial results in H, the 3^{rd} trial results in T
- Example: Measure temperature twice, with outcomes 72.3 F, 71.8 F \rightarrow 2 trials
- Once a trial is performed, the result of the trial is deterministic (not random)

• Classification: Discrete v.s. Continuous

- Discrete random experiment: the number of outcomes are countable (i.e., the outcomes can be put in a one-to-one correspondence with integers),
 - E.g. flipping a coin {H, T},
 - It is possible a discrete random experiment has infinite possible outcomes
 - E.g. count the number of atoms in an object: $\{1, 2, 3, ...\}$
 - E.g. count the number of stars: $\{1, 2, 3, ...\}$
- Continuous random experiment: the number of outcomes are not countable
 - E.g. lifetime of a car $[0, \infty)$
 - E.g. randomly pick a real number in the range between [0, 1]
 - Continuous random experiment always has infinite outcomes

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

• Probability

- Assign a number between [0, 1] to each random event of a sample space, such that the number is a measure of how likely the event is.
 - E.g. flipping a coin. Assign 0.5 to H, 0.5 to T
 - 0.5 is the probability of H, 0.5 is the probability of T
 - E.g. tossing a die with events {1, 2} (2 or less)
 - 1/3 is the probability of "2 or less"
 - It is a mapping from a random event to a number between [0, 1]

Random event (a subset of S) \rightarrow [0, 1]

- There are several different definitions of probability
 - Relative-frequency approach
 - Axiomatic approach

PROBABILITY: RELATIVE-FREQUENCY

• Relative-frequency

- Example: consider a random experiments with sample space: $S = \{A, B, C\}$. Perform the experiments for a total of N = 1,000 times
 - Event {A} occurs $N_A = 500$ times
 - Event {B} occurs $N_B = 300$ times
 - Event {C} occurs $N_C = 200$ times
 - $N_A + N_B + N_c = N$
 - The relative frequency of {A} is
 - The relative frequency of $\{B\}$ is r(B)
 - The relative frequency of {C} is

$$r(A) = \frac{N_A}{N}$$

$$r(B) = \frac{N_B}{N}$$
$$r(C) = \frac{N_C}{N}$$

PROBABILITY: RELATIVE-FREQUENCY DEFINITION

• Relative-frequency

- The probability of event {A}

$$\Pr(A) = \lim_{N \to \infty} \frac{N_A}{N}$$

- The sum of the probabilities of all the events

Pr(A) + Pr(B) + Pr(C) =

PROBABILITY: RELATIVE FREQUENCY

• Example

- Consider a bin contains 100 diodes. Among them, 20 are known to be bad.
- Pick 1 diode from the bin
 - Sample space
 - Probability that the picked one is bad

PROBABILITY: AXIOMATIC DEFINITION

• Definition: Probability

- Consider a random experiment with sample space S. For each event *E* of the sample space *S*, we assign it a positive number Pr(*E*), which satisfies the following properties
 - 1. $0 \leq \Pr(E) \leq 1$
 - 2. Pr(S) = 1
 - 3. For any sequence of events E_1, E_2, \cdots that are mutually exclusive $(E_m \cap E_n = \phi, \forall m \neq n)$ $\Pr\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \Pr(E_n)$
- Then Pr(E) is called as the probability of event *E*.

• Example

- Toss a die.
 - Sample space
 - The probability of getting a number 3
 - The probability of getting an even number

• Probability of complement events

- Events E and E^c are always mutually exclusive

 $\Pr(E) + \Pr(E^c) =$

• Probability of two events

- Consider a sample space *S* with two events *E* and *F*. The probability that either *E* or *F* happens (the probability of all outcomes either in *E* or *F*)

 $\Pr(E \bigcup F) =$

- The probability of two events: consider a sample space *S* with two events *E* and *F*
 - The probability either E or F happens (the probability that the outcome is either in E or F)

$$\Pr(E \cup F)$$

- The probability that both *E* and *F* happens (the probability that the outcome is in both *E* and *F*)

 $\Pr(E \cap F)$

• Also denoted as

 $\Pr(EF)$

• Called the joint probability

• Property

-
$$\Pr(A \cap B^c) + \Pr(A \cap B) = \Pr(A)$$

• Proof:

– Recall:
$$(A \cap B^c) \cup (A \cap B) = A$$

 $(A \cap B^c) \cap (A \cap B) = \emptyset$

• Property

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

– Proof:

• Example

- Toss 2 different coins,
- $E = \{(H, H), (H, T)\}, F = \{(H, H), (T, H)\}, G = \{(T, T)\}$

 $\Pr(E \bigcup F) =$

 $\Pr(E \cap F) =$

$\Pr(E \bigcup F \bigcup G) =$

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

CONDITIONAL PROBABILITY

• Joint probability

- Consider a sample space S with two events E and F. The probability that both E and F happens (the probability of all outcomes in both E and F)
 - $\Pr(E \cap F)$
 - Also denoted as Pr(EF)

CONDITIONAL PROBABILITY

• Example

 Consider an urn contains 100 resistors of different resistance and power ratings. The number of the different types are listed as follows

	1 Ohm	10 Ohm	100 Ohm	Totals
1 W	10	20	30	60
10 W	10	20	10	40
Totals	20	40	40	100

- Pick 1 resistor
- What is the probability that the resistor has a power rating of 1 W?
- What is the probability that the resistor has a resistance of 10 Ohm?
- What is the probability that the resistor is 10 Ohm with 1 W rating?

Conditional Probability

- Pr(E|F): Given the condition that the event F occurred, the probability that E occurs.
- Example:
 - (Cont'd from the previous example) Pick one resistor. If the picked resistor has a 1W rating, what is the probability that the resistor is 10 Ohm?

	1 Ohm	10 Ohm	100 Ohm	Totals
1 W	10	20	30	60
10 W	10	20	10	40
Totals	20	40	40	100

• Pr(10 Ohm|1W) =

• Pr(10Ohm, 1W) = Pr(10 Ohm|1W)Pr(1W)

• Conditional Probability

$$\Pr(A \mid B) = \frac{\Pr(AB)}{\Pr(B)}$$

Pr(AB) = Pr(A | B) Pr(B) = Pr(B | A) Pr(A)

- Consider a bin contains 100 diodes. Among them, 20 are known to be bad. Pick 2 diodes from the bin
 - Sample space
 - The probability that the 1st one is bad
 - If the 1st one is bad, what is the probability that the 2nd one is bad?
 - If the 1st one is good, what is the probability that the 2nd one is bad?
 - The probability that both are bad.
 - The probability that the 1^{st} one is good, the 2^{nd} one is bad.

• Example

Cards numbered 1 through 10 are placed in a hat. Pick one card. If we are told that the number on the card is at least 5. What is the probability that the card is 10?

• Example

 Suppose an urn contains 7 black balls and 5 white balls. We draw 2 balls from the urn without replacement. What is the probability that both balls are black?

• Example

- Alice can take either Chemistry or Physics. If Alice takes Chemistry, the probability that she will get an A is 0.5. If she takes Physics, the probability that she will get an A is 0.6. If Alice decides which course to take by flipping a fair coin. What is the probability that Alice gets an A in Chemistry?

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

• Independence

- Two events, A and B, are independent, if and only if

Pr(AB) = Pr(A) Pr(B)

- If A and B are independent

 $\Pr(A \mid B) =$

 $\Pr(B \mid A) =$

- Independent \neq mutually exclusive
 - A and B are independent $Pr(A \cap B) = Pr(A)Pr(B)$

 $\Pr(A \cup B) =$

• A and B are mutually exclusive

 $\Pr(A \cup B) = \Pr(A) + \Pr(B)$

- $\Pr(A \cap B) =$

• Example

- Toss a fair coin twice. Are the two trials independent?

 Suppose an urn contains 7 black balls and 5 white balls. We draw 2 balls from the urn without replacement. Are the result of the 1st draw independent of the 2nd draw?

- Toss 2 dice. Define event A as getting a 5, and event B as getting a 7.
 - Are A and B independent?
 - Are A and B mutually exclusive?

- Example
 - Toss 2 dice. Define event A as getting an odd number, and event B as getting a 7.
 - Are A and B independent?
 - Are A and B mutually exclusive?

- A deck of 52 cards. Let A be the event of selecting an Ace, and let B be the event of selecting a Heart. 1. Are A and B independent? Are A and B mutually exclusive?
 - 4 suits: {club, spade, heart, diamond}
 - 13 denominations: {Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King}

• Pairwise independence

- A sequence of events E_1, E_2, Λ, E_n are called pairwise independent if any pair of events are independent

$$\Pr(E_i E_j) = \Pr(E_i) \Pr(E_j)$$
 $\forall i \neq j$

• Independence

- A sequence of events E_1, E_2, \dots, E_n are independent if any subset of the sequence are independent

 $\Pr(E_{r_1}E_{r_2}\cdots E_{r_k}) = \Pr(E_{r_1})\Pr(E_{r_2})\cdots\Pr(E_{r_k}) \qquad 1 \le r_1, r_2, \cdots, r_k \le n$

– Example

 E_1, E_2, E_3, E_4

- Let a ball be drawn from an urn containing 4 balls, numbered 1, 2, 3, 4. Let $E = \{1, 2\}, F = \{1, 3\}, G = \{1, 4\}.$
 - Are E, F, G pairwise independent?
 - Are E, F, G independent?

INDEPENDENCE: COMBINED EXPERIMENT

Combined experiment

- Example: a combined experiment is performed in which a coin is flipped and a single die is rolled.
 - Write the sample space.
 - Let A be the event of obtaining a head and a number 3 or less. Find the probability of A.

INDEPENDENCE: COMBINED EXPERIMENT

Combined experiment

- Two or more experiments are performed together, forming a combined experiment.
- Experiment 1 has a sample space $S_1 = \{a_1, a_2, \dots, a_n\}$
- Experiment 2 has a sample space

$$S_1 = \{b_1, b_2, \dots, b_m\}$$

- Then the sample space of the combined experiment is

$$S = S_1 \times S_2 = \{(a_1, b_1), (a_1, b_2), \dots, (a_1, b_m), \dots, (a_n, b_1), \dots, (a_n, b_m)\}$$

•
$$S = S_1 \times S_2$$
 is called the Cartesian product of S_1 and S_2

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

Total probability

- If we know P(A|B), how do we find out P(A)
 - Conditional probability → Unconditional probability
- Suppose B_1, B_2, \dots, B_n are mutually exclusive events and $B_1 \bigcup B_2 \bigcup \dots \bigcup B_n = S$

 $\Pr(A) = \Pr(A \mid B_1) \Pr(B_1) + \Pr(A \mid B_2) \Pr(B_2) + \dots + \Pr(A \mid B_n) \Pr(B_n)$

• Proof

- Consider two urns. The 1st contains 3 white and 7 black balls. The 2nd contains 8 white and 2 black balls. We flip a fair coin and then draw a ball from the 1st urn if the coin is head, and draw a ball from the 2nd urn if the coin is tail.
 - What is the probability drawing from the 1st urn?
 - What is the probability of drawing a black ball from the 1st urn?
 - What is the probability of drawing a black ball from the 2nd urn?
 - What is the probability of drawing a black ball?

• Bayes' formula

- $\operatorname{Pr}(A|B_i) \to \operatorname{Pr}(B_i|A)$
- Suppose B_1, B_2, \dots, B_n are mutually exclusive events and $B_1 \cup B_2 \cup \dots \cup B_n = S$

$$\Pr(B_i \mid A) = \frac{\Pr(A \mid B_i) \Pr(B_i)}{\Pr(A)} = \frac{\Pr(A \mid B_i) \Pr(B_i)}{\sum_{k=1}^{n} \Pr(A \mid B_k) \Pr(B_k)}$$

– Proof

- Consider two urns. The 1st contains 3 white and 7 black balls. The 2nd contains 8 white and 2 black balls. We flip a fair coin and then draw a ball from the 1st urn if the coin is head, and draw a ball from the 2nd urn if the coin is tail.
 - If we draw a black ball, what is the probability that we draw it from the 1st urn?
 - If we draw a black ball, what is the probability that we draw it from the 2nd urn?

• Example

- Alice can take either Chemistry or Physics. If Alice takes Chemistry, the probability that she will get an A is 0.5. If she takes Physics, the probability that she will get an A is 0.6. If Alice decides which course to take by flipping a fair coin. If Alice gets an A, what is the probability that she takes Chemistry?

- A manufacture buys components in equal amount from 4 different suppliers. The probability that components from supplier 1 are bad is 0.05, that components from supplier 2 are bad is 0.1, that components from supplier 3 are bad is 0.2, that components from supplier 4 are bad is 0.15,
 - The probability that a component is bad.
 - If a component is bad, the probability that it is from supplier 2.

• Example

A lab blood test to detect a certain disease. If the disease is present, the test can detect it 95% of the time. However, the test also gives a "false positive" result for 1% of the healthy person being tested (that is, if a healthy person is tested, then, with probability 0.01, the result will imply the person has the disease). Assume 0.5% of the population actually has the disease. If the test result of a person is positive, what is the probability that the person actually has the disease?

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

BERNOULLI TRIALS

• Bernoulli trials

- Consider an experiment with event A, and Pr(A) = p.
- Repeat the experiment *n* times, what is the probability that event A happens exactly *k* times? $(0 \le k \le n)$
- The composite events that there are exactly *k* event *A* in *n* trials:

- The probability of one of the events

- How many such events are there?
 - Choose *k* position out of *n* positions (example, k = 2, n = 4)

• Bernoulli trials

$$p_n(k) = \Pr(\text{A occurs k times in n trials}) = {\binom{n}{k}} p^k (1-p)^{n-k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

BERNOULLI TRIALS

- Toss an unfair coin 6 times. The probability of Head is 0.3.
 - What is the probability that the head occurs twice?
 - What is the probability that the head occurs more than once?

