Department of Electrical Engineering University of Arkansas

ELEG 3143 Probability \& Stochastic Process Ch. 1 Probability

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

APPLICARTIONS

- Why probability?
- Most real world events have uncertain (or random) outcomes
- flipping a coin
- Tossing dices
- Football games
- Blackjack
- Expected lifetime of iPhone
- The actual resistance of a 100 Ohm resistor
-
- How do we characterize these random events?
- Can we predict the outcome of a random event?

APPLICATIONS

- Probability Theory
- provides a complete set of mathematical tools and theories that can accurately and precisely describe the statistical behaviors of the random phenomenon.
- It is a branch of Mathematics
- It has a wide rang of applications to Engineers.

APPLICATIONS

- Random input signals
- The input for a system might be random
- E.g. the number of vehicles passing through a certain check points as an input to a traffic control system (e.g. duration of traffic lights)
- E.g. temperature fluctuations as an input to a heating system
- E.g. Music signals as an input to your stereo system
- Random system characteristics
- The system itself has random characteristics
- E.g. The components inside a system has random values
- A 100 Ohm resistor might have an actual value of 101 Ohm
- E.g. Noise: random electrical disturbance caused by the random movement of electronics
- It is present at all electrical systems

APPLICATIONS

- System reliability
- What is the expected life cycle of a given system?
- What is the probability of failure of a system?
- Warranty duration, insurance policy, etc.
- Random sampling
- It might be too costly to inspect every single elements
- Only sample a small population, then deduce the general behavior from the sample results
- E.g. survey
- E.g. product inspection for quality control
- How to design the random sampling process?
- Computer simulation
- A cost effective and efficient way to test the performance of a system
- Random inputs, random system parameters (e.g. random component value, random disturbance, ...)

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

SET THEORY

- Set
- A collection of elements
- Example: $E=\left\{\alpha_{1}, \alpha_{2}, \Lambda, \alpha_{n}\right\}$
- E is a set
- α_{m} is an element of the set E
- A subset of E is any set all of whose elements are also elements of E
- Example: $E=\{1,2,3,4,5,6\}$
- $F=\{1,3,6\}$ is a subset of $E, \quad F \subset E$
- $G=\{1\}$ is a subset of $E, \quad G \subset E$
- Any set is a subset of itself $\quad E \subset E$
- Empty set: $\boldsymbol{\phi}$
- A set that does not have any element
- Empty set is a subset of any set $\boldsymbol{\phi} \subset \boldsymbol{E}$
- Space S : the largest set of interests for a given application
- E.g. toss a coin, $\mathrm{S}=\{\mathrm{H}, \mathrm{T}\}$
- E.g. throw a die, $S=\{1,2,3,4,5,6\}$

SET THEORY: VENN DIAGRAM

- Venn diagram
- A geometric representation, where the space S is represented by a square and the sets are represented by closed plane figures inside the square.
- E.g. $C \subset B \subset A$

- If $A \subset B$ and $B \subset A$, then $A=B$

SET THEORY

- Union (sum)
- The union of two sets A and B is a set consisting of all the elements from A or B or both
- Denoted as A U B
- Associate law
$A \cup B \cup C=(A \cup B) \cup C=A \cup(B \cup C)$
- Commutative law

$$
A \cup B=B \cup A
$$

- Properties
$A \cup A=$
$A \cup S=$
$A \cup \phi=$
If $A \subset B, A \cup B=$

SET THEORY

- Intersection (product)
- The intersection of two sets is the set consisting of all the elements from both sets.
- Denoted as $A \cap B$
- Associative law

$$
A \cap B \cap C=(A \cap B) \cap C=A \cap(B \cap C)
$$

- Commutative law

$$
A \cap B=B \cap A
$$

- Properties

$$
\begin{aligned}
& A \cup A= \\
& A \cup S= \\
& A \cup \phi=
\end{aligned}
$$

$$
\text { if } A \subset B, \quad A \cap B=
$$

- Mutually exclusive (disjoint)
A and B are mutually exclusive if $A \cap B=\phi$

SET THEORY

- Intersection (Cont'd)

$$
\begin{array}{ll}
- & A \cap B \cap C=(A \cap B) \cap C=A \cap(B \cap C) \\
- & (A \cup B) \cap C=(A \cap C) \cup(B \cap C) \\
- & (A \cap B) \cup C=(A \cup C) \cap(B \cup C)
\end{array}
$$

- Complement
- The complement of $\operatorname{set} A$ is a set containing all the
 elements of S that are not in A.
- Denoted as A^{c}
- Properties

$$
\begin{aligned}
& \phi^{c}= \\
& S^{c}= \\
& \left(A^{c}\right)^{c}= \\
& A \cup A^{c}= \\
& A \cap A^{c}=
\end{aligned}
$$

SET THEORY

- Complement (Cont'd)
- If $A \subset B$, then $\quad B^{c} \quad A^{c}$
- DeMorgan's Laws

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

SET THEORY

- Difference
- The difference of two sets, $A-B$, is a set consisting of the elements of A that are not in B.

$$
A-B=A \cap B^{c}
$$

- Examples

$$
\begin{aligned}
& (A-B) \cup B= \\
& (A-B) \cap B= \\
& (A-B) \cap A= \\
& A-\phi= \\
& A-S= \\
& S-A=
\end{aligned}
$$

SET THEORY

- Example
$-\mathrm{S}=\{1,2,3,4,5,6\}$
$-\mathrm{A}=\{2,4,6\}, \mathrm{B}=\{1,2,3,4\}, \mathrm{C}=\{1,3,5\}$

$$
\begin{aligned}
& (A \cup B) \cap C= \\
& (A \cup B)^{c}= \\
& (A \cap B)^{c}= \\
& (A-B) \cap B= \\
& (A \cup B) \cap(B-A)=
\end{aligned}
$$

SET THEORY

- Example
- If A and B are subset of the same space S
- Simplify the following notation

$$
(A \cap B) \cup(A-B)=
$$

$A^{c} \cap(A-B)=$
$(A \cap B) \cap(A \bigcup B)=$

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

RANDOM EXPERIMENT

- Experiment:
- An action that results in an outcome.
- Random experiment
- An experiment in which the outcome is uncertain before the experiment is performed.
- Sample space S : the set of all possible outcomes of a random experiment
- Examples:
- Flipping a coin

$$
-\mathrm{S}=\{\mathrm{H}, \mathrm{~T}\}
$$

- Flipping two coins
$-\mathrm{S}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$
- Throwing a die
$-S=\{1,2,3,4,5,6\}$
- Lifetime of a car

$$
-S=[0, \infty)
$$

- Outcome: each element in the sample space

RANDOM EXPERIMENT

- Random events: any subset E of the sample space S
- E.g. throwing a die
- $\mathrm{E} 1=\{3\}$: the event that 3 appears
- $\mathrm{E} 2=\{2,4,6\}$: the event that an even number appears.
- Elementary random event:
- An elementary event is one for which there is only one element in the event
- E.g. flipping a coin, $\{\mathrm{H}\}$ is an elementary event
- E.g. tossing a dice, $\{4\}$ is an elementary event
- E.g. measuring a voltage, $\{2.37\}$ Volt is an elementary event
- Composite event
- An event that might have several possible outcomes
- E.g. tossing a die, "even" is a composite event, it includes the elementary outcomes $\{2,4,6\}$
- E.g. measuring a voltage, "greater than 0 " is a composite event, in includes all the elementary outcomes $(0, \infty)$

RANDOM EXPERIMENT

- Trial
- A single performance of an experiment
- Example: A coin is tossed 3 times, with outcomes $\mathrm{H}, \mathrm{H}, \mathrm{T} \rightarrow 3$ trials.
- The $1^{\text {st }}$ trial results in H , the $2^{\text {nd }}$ trial results in H , the $3^{\text {rd }}$ trial results in T
- Example: Measure temperature twice, with outcomes 72.3 F, 71.8 F $\rightarrow 2$ trials
- Once a trial is performed, the result of the trial is deterministic (not random)

RANDOM EXPERIMENT

- Classification: Discrete v.s. Continuous
- Discrete random experiment: the number of outcomes are countable (i.e., the outcomes can be put in a one-to-one correspondence with integers),
- E.g. flipping a coin $\{\mathrm{H}, \mathrm{T}\}$,
- It is possible a discrete random experiment has infinite possible outcomes
- E.g. count the number of atoms in an object: $\{1,2,3, \ldots\}$
- E.g. count the number of stars: $\{1,2,3, \ldots\}$
- Continuous random experiment: the number of outcomes are not countable
- E.g. lifetime of a car [0, ∞)
- E.g. randomly pick a real number in the range between [0, 1]
- Continuous random experiment always has infinite outcomes

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

PROBABILITY

- Probability
- Assign a number between $[0,1]$ to each random event of a sample space, such that the number is a measure of how likely the event is.
- E.g. flipping a coin. Assign 0.5 to $\mathrm{H}, 0.5$ to T
- 0.5 is the probability of $\mathrm{H}, 0.5$ is the probability of T
- E.g. tossing a die with events $\{1,2\}$ (2 or less)
$-1 / 3$ is the probability of " 2 or less"
- It is a mapping from a random event to a number between $[0,1]$

Random event (a subset of S) $\rightarrow[0,1]$

- There are several different definitions of probability
- Relative-frequency approach
- Axiomatic approach

PROBABILITY: RELATIVE-FREQUENCY

- Relative-frequency
- Example: consider a random experiments with sample space: $\mathrm{S}=\{\mathrm{A}, \mathrm{B}$, C\}. Perform the experiments for a total of $\mathrm{N}=1,000$ times
- Event $\{\mathrm{A}\}$ occurs $N_{A}=500$ times
- Event $\{\mathrm{B}\}$ occurs $N_{B}=300$ times
- Event $\{\mathrm{C}\}$ occurs $N_{C}=200$ times
- $N_{A}+N_{B}+N_{c}=N$
- The relative frequency of $\{\mathrm{A}\}$ is
- The relative frequency of $\{\mathrm{B}\}$ is $r(B)=\frac{N_{B}}{N}$
- The relative frequency of $\{\mathrm{C}\}$ is

$$
\begin{aligned}
& r(A)=\frac{N_{A}}{N} \\
& r(B)=\frac{N_{B}}{N} \\
& r(C)=\frac{N_{C}}{N}
\end{aligned}
$$

- The more trials we perform, the more accurate the result is.

PROBABILITY: RELATIVE-FREQUENCY DEFINITION

- Relative-frequency
- The probability of event $\{\mathrm{A}\}$

$$
\operatorname{Pr}(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}
$$

- The sum of the probabilities of all the events

$$
\operatorname{Pr}(A)+\operatorname{Pr}(B)+\operatorname{Pr}(C)=
$$

PROBABILITY: RELATIVE FREQUENCY

- Example
- Consider a bin contains 100 diodes. Among them, 20 are known to be bad.
- Pick 1 diode from the bin
- Sample space
- Probability that the picked one is bad

PROBABILITY: AXIOMATIC DEFINITION

- Definition: Probability
- Consider a random experiment with sample space S. For each event E of the sample space S, we assign it a positive number $\operatorname{Pr}(E)$, which satisfies the following properties
- 1. $0 \leq \operatorname{Pr}(E) \leq 1$
- 2. $\operatorname{Pr}(S)=1$
- 3. For any sequence of events E_{1}, E_{2}, \cdots that are mutually exclusive $\left(E_{m} \cap E_{n}=\phi, \forall m \neq n\right)$

$$
\operatorname{Pr}\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} \operatorname{Pr}\left(E_{n}\right)
$$

- Then $\operatorname{Pr}(E)$ is called as the probability of event E.

PROBABILITY

- Example
- Toss a die.
- Sample space
- The probability of getting a number 3
- The probability of getting an even number

PROBABILITY

- Probability of complement events
- Events E and E^{c} are always mutually exclusive

$$
\operatorname{Pr}(E)+\operatorname{Pr}\left(E^{c}\right)=
$$

- Probability of two events
- Consider a sample space S with two events E and F. The probability that either E or F happens (the probability of all outcomes either in E or F)

$$
\operatorname{Pr}(E \bigcup F)=
$$

PROBABILITY

- The probability of two events: consider a sample space S with two events E and F
- The probability either E or F happens (the probability that the outcome is either in E or F)

$$
\operatorname{Pr}(E \cup F)
$$

- The probability that both E and F happens (the probability that the outcome is in both E and F)

$$
\operatorname{Pr}(E \cap F)
$$

- Also denoted as

$$
\operatorname{Pr}(E F)
$$

- Called the joint probability

PROBABILITY

- Property

$$
-\quad \operatorname{Pr}\left(A \cap B^{c}\right)+\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A)
$$

- Proof:

$$
\begin{array}{ll}
\text { - Recall: } & \left(A \cap B^{c}\right) \cup(A \cap B)=A \\
& \left(A \cap B^{c}\right) \cap(A \cap B)=\emptyset
\end{array}
$$

PROBABILITY

- Property

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

- Proof:

PROBABILITY

- Example
- Toss 2 different coins,
$-\mathrm{E}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\}, \mathrm{F}=\{(\mathrm{H}, \mathrm{H}),(\mathrm{T}, \mathrm{H})\}, \mathrm{G}=\{(\mathrm{T}, \mathrm{T})\}$

$$
\operatorname{Pr}(E \bigcup F)=
$$

$$
\operatorname{Pr}(E \cap F)=
$$

$\operatorname{Pr}(E \bigcup F \cup G)=$

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

CONDITIONAL PROBABILITY

- Joint probability
- Consider a sample space S with two events E and F. The probability that both E and F happens (the probability of all outcomes in both E and F)
- $\operatorname{Pr}(E \bigcap F)$
- Also denoted as $\operatorname{Pr}(E F)$

CONDITIONAL PROBABILITY

- Example
- Consider an urn contains 100 resistors of different resistance and power ratings. The number of the different types are listed as follows

	1 Ohm	10 Ohm	100 Ohm	Totals
1 W	10	20	30	60
10 W	10	20	10	40
Totals	20	40	40	100

- Pick 1 resistor
- What is the probability that the resistor has a power rating of 1 W ?
- What is the probability that the resistor has a resistance of 10 Ohm ?
- What is the probability that the resistor is 10 Ohm with 1 W rating?

CONDITIONAL PROBABILITY

- Conditional Probability
$-\operatorname{Pr}(\mathrm{E} \mid \mathrm{F})$: Given the condition that the event F occurred, the probability that E occurs.
- Example:
- (Cont'd from the previous example) Pick one resistor. If the picked resistor has a 1 W rating, what is the probability that the resistor is 10 Ohm?

	1 Ohm	10 Ohm	100 Ohm	Totals
1 W	10	20	30	60
10 W	10	20	10	40
Totals	20	40	40	100

- $\operatorname{Pr}(10 \mathrm{Ohm} \mid \mathrm{W})=$
- $\operatorname{Pr}(10 \mathrm{Ohm}, 1 \mathrm{~W})=\operatorname{Pr}(10 \mathrm{Ohm} \mid \mathrm{W}) \operatorname{Pr}(1 \mathrm{~W})$

CONDITIONAL PROBABILITY

- Conditional Probability

$$
\begin{gathered}
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A B)}{\operatorname{Pr}(B)} \\
\operatorname{Pr}(A B)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B)=\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)
\end{gathered}
$$

CONDITIONAL PROBABILITY

- Example
- Consider a bin contains 100 diodes. Among them, 20 are known to be bad. Pick 2 diodes from the bin
- Sample space
- The probability that the $1^{\text {st }}$ one is bad
- If the $1^{\text {st }}$ one is bad, what is the probability that the $2^{\text {nd }}$ one is bad?
- If the $1^{\text {st }}$ one is good, what is the probability that the $2^{\text {nd }}$ one is bad?
- The probability that both are bad.
- The probability that the $1^{\text {st }}$ one is good, the $2^{\text {nd }}$ one is bad.

CONDITIONAL PROBABILITY

- Example
- Cards numbered 1 through 10 are placed in a hat. Pick one card. If we are told that the number on the card is at least 5 . What is the probability that the card is 10 ?

CONDITIONAL PROBABILITY

- Example
- Suppose an urn contains 7 black balls and 5 white balls. We draw 2 balls from the urn without replacement. What is the probability that both balls are black?

CONDITIONAL PROBABILITY

- Example
- Alice can take either Chemistry or Physics. If Alice takes Chemistry, the probability that she will get an A is 0.5 . If she takes Physics, the probability that she will get an A is 0.6 . If Alice decides which course to take by flipping a fair coin. What is the probability that Alice gets an A in Chemistry?

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

INDEPENDENCE

- Independence
- Two events, A and B, are independent, if and only if

$$
\operatorname{Pr}(A B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

- If A and B are independent

$$
\begin{aligned}
& \operatorname{Pr}(A \mid B)= \\
& \operatorname{Pr}(B \mid A)=
\end{aligned}
$$

- Independent \neq mutually exclusive
- A and B are independent

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)
$$

$$
\operatorname{Pr}(A \bigcup B)=
$$

- A and B are mutually exclusive

$$
\operatorname{Pr}(A \bigcup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)
$$

$$
\operatorname{Pr}(A \bigcap B)=
$$

INDEPENDENCE

- Example
- Toss a fair coin twice. Are the two trials independent?
- Suppose an urn contains 7 black balls and 5 white balls. We draw 2 balls from the urn without replacement. Are the result of the $1^{\text {st }}$ draw independent of the $2^{\text {nd }}$ draw?

INDEPENDENCE

- Example
- Toss 2 dice. Define event A as getting a 5, and event B as getting a 7 .
- Are A and B independent?
- Are A and B mutually exclusive?
- Example
- Toss 2 dice. Define event A as getting an odd number, and event B as getting a 7.
- Are A and B independent?
- Are A and B mutually exclusive?

INDEPENDENCE

- Example
- A deck of 52 cards. Let A be the event of selecting an Ace, and let B be the event of selecting a Heart. 1. Are A and B independent? Are A and B mutually exclusive?
- 4 suits: \{club, spade, heart, diamond\}
- 13 denominations: \{Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King \}

INDEPENDENCE

- Pairwise independence
- A sequence of events $E_{1}, E_{2}, \Lambda, E_{n}$ are called pairwise independent if any pair of events are independent

$$
\operatorname{Pr}\left(E_{i} E_{j}\right)=\operatorname{Pr}\left(E_{i}\right) \operatorname{Pr}\left(E_{j}\right) \quad \forall i \neq j
$$

- Independence

- A sequence of events $E_{1}, E_{2}, \cdots, E_{n}$ are independent if any subset of the sequence are independent

$$
\operatorname{Pr}\left(E_{r_{1}} E_{r_{2}} \cdots E_{r_{k}}\right)=\operatorname{Pr}\left(E_{r_{1}}\right) \operatorname{Pr}\left(E_{r_{2}}\right) \cdots \operatorname{Pr}\left(E_{r_{k}}\right) \quad 1 \leq r_{1}, r_{2}, \cdots, r_{k} \leq n
$$

- Example

$$
E_{1}, E_{2}, E_{3}, E_{4}
$$

INDEPENDENCE

- Example
- Let a ball be drawn from an urn containing 4 balls, numbered 1, 2, 3, 4 . Let $\mathrm{E}=\{1,2\}, \mathrm{F}=\{1,3\}, \mathrm{G}=\{1,4\}$.
- Are E, F, G pairwise independent?
- Are E, F, G independent?

INDEPENDENCE: COMBINED EXPERIMENT

- Combined experiment
- Example: a combined experiment is performed in which a coin is flipped and a single die is rolled.
- Write the sample space.
- Let A be the event of obtaining a head and a number 3 or less. Find the probability of A.

INDEPENDENCE: COMBINED EXPERIMENT

- Combined experiment
- Two or more experiments are performed together, forming a combined experiment.
- Experiment 1 has a sample space $S_{1}=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$
- Experiment 2 has a sample space $S_{2}=\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$
- Then the sample space of the combined experiment is

$$
S=S_{1} \times S_{2}=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right), \cdots,\left(a_{1}, b_{m}\right), \cdots,\left(a_{n}, b_{1}\right), \cdots,\left(a_{n}, b_{m}\right)\right\}
$$

- $S=S_{1} \times S_{2}$ is called the Cartesian product of S_{1} and S_{2}

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

BAYES' FORMULA

- Total probability
- If we know $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$, how do we find out $\mathrm{P}(\mathrm{A})$
- Conditional probability \rightarrow Unconditional probability
- Suppose $B_{1}, B_{2}, \cdots, B_{n}$ are mutually exclusive events and $B_{1} \cup B_{2} \cup \cdots \cup B_{n}=S$

$$
\operatorname{Pr}(A)=\operatorname{Pr}\left(A \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(A \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\cdots+\operatorname{Pr}\left(A \mid B_{n}\right) \operatorname{Pr}\left(B_{n}\right)
$$

- Proof

BAYES' FORMULA

- Example
- Consider two urns. The $1^{\text {st }}$ contains 3 white and 7 black balls. The $2^{\text {nd }}$ contains 8 white and 2 black balls. We flip a fair coin and then draw a ball from the $1^{\text {st }}$ urn if the coin is head, and draw a ball from the $2^{\text {nd }}$ urn if the coin is tail.
- What is the probability drawing from the $1^{\text {st }}$ urn?
- What is the probability of drawing a black ball from the $1^{\text {st }}$ urn?
- What is the probability of drawing a black ball from the $2^{\text {nd }}$ urn?
- What is the probability of drawing a black ball?

BAYES' FORMULA

- Bayes' formula
$-\operatorname{Pr}\left(A \mid B_{i}\right) \rightarrow \operatorname{Pr}\left(B_{i} \mid A\right)$
- Suppose $B_{1}, B_{2}, \ldots, B_{n}$ are mutually exclusive events and $B_{1} \cup B_{2} \cup \cdots \cup B_{n}=S$

$$
\operatorname{Pr}\left(B_{i} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\operatorname{Pr}(A)}=\frac{\operatorname{Pr}\left(A \mid B_{i}\right) \operatorname{Pr}\left(B_{i}\right)}{\sum_{k=1}^{n} \operatorname{Pr}\left(A \mid B_{k}\right) \operatorname{Pr}\left(B_{k}\right)}
$$

- Proof
- Example
- Consider two urns. The $1^{\text {st }}$ contains 3 white and 7 black balls. The $2^{\text {nd }}$ contains 8 white and 2 black balls. We flip a fair coin and then draw a ball from the $1^{\text {st }}$ urn if the coin is head, and draw a ball from the $2^{\text {nd }}$ urn if the coin is tail.
- If we draw a black ball, what is the probability that we draw it from the $1^{\text {st }}$ urn?
- If we draw a black ball, what is the probability that we draw it from the $2^{\text {nd }}$ urn?

BAYES' FORMULA

- Example
- Alice can take either Chemistry or Physics. If Alice takes Chemistry, the probability that she will get an A is 0.5 . If she takes Physics, the probability that she will get an A is 0.6 . If Alice decides which course to take by flipping a fair coin. If Alice gets an A , what is the probability that she takes Chemistry?

BAYES' FORMULA

- Example
- A manufacture buys components in equal amount from 4 different suppliers. The probability that components from supplier 1 are bad is 0.05 , that components from supplier 2 are bad is 0.1 , that components from supplier 3 are bad is 0.2 , that components from supplier 4 are bad is 0.15 ,
- The probability that a component is bad.
- If a component is bad, the probability that it is from supplier 2.
- Example
- A lab blood test to detect a certain disease. If the disease is present, the test can detect it 95% of the time. However, the test also gives a "false positive" result for 1% of the healthy person being tested (that is, if a healthy person is tested, then, with probability 0.01 , the result will imply the person has the disease). Assume 0.5% of the population actually has the disease. If the test result of a person is positive, what is the probability that the person actually has the disease?

OUTLINE

- Applications
- Elementary Set Theory
- Random Experiments
- Probability
- Conditional probability
- Independence
- Bayes' Formula
- Bernoulli trials

BERNOULLI TRIALS

- Bernoulli trials
- Consider an experiment with event A, and $\operatorname{Pr}(A)=p$.
- Repeat the experiment n times, what is the probability that event A happens exactly k times? $(0 \leq k \leq n)$
- The composite events that there are exactly k event A in n trials:
- The probability of one of the events
- How many such events are there?
- Choose k position out of n positions (example, $\mathrm{k}=2, \mathrm{n}=4$)

BERNOULLI TRIALS

- Bernoulli trials

$$
\begin{aligned}
& p_{n}(k)=\operatorname{Pr}(\mathrm{A} \text { occurs } \mathrm{k} \text { times in } \mathrm{n} \text { trials })=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& \qquad\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

BERNOULLI TRIALS

- Example
- Toss an unfair coin 6 times. The probability of Head is 0.3.
- What is the probability that the head occurs twice?
- What is the probability that the head occurs more than once?

