ELEG 3143 Assignment # 1

- 1. If A and B are subsets in the same space, find
 - (a) $(A B) \cap (B A)$
 - (b) $(A-B)\cap B^c$
 - (c) $(A-B) \cup (A \cap B)$
- 2. A space $S = \{a, b, c, d, e, f\}$ has two subsets defined as $A = \{a, c, e\}$ and $B = \{c, d, e, f\}$. Find
 - (a) A B
 - (b) $(B-A) \cup A$
- 3. State whether each of the following defined events is an elementary event.
 - (a) Obtaining two heads when three coins are flipped
 - (b) Obtaining an ace when a card is selected at random from a deck of cards
 - (c) Obtaining three heads when three coins are flipped
- 4. If a piar of dice are rolled, determine the probability of each of the following events.
 - (a) Obtaining a sum of 11
 - (b) Obtaining a sum less than 5
 - (c) Obtaining a sum that is an even number

5. A company manufactures small electric motors having horse power ratings of 0.1, 0.5, or 1.0 horsepower (HP) and designed for operating with 120 V single-phase $(1-\phi)$ AC, 240 V single-phase AC, or 240 V three-phase $(3-\phi)$ AC. The motor types can be distinguished only by their nameplates. A distributor has on hand 3000 motors in the quantities shown in the table below.

Horse Power	$120~\mathrm{V}~1\text{-}\phi$	240 V 1- ϕ	240V 3- ϕ
0.1	900	400	0
0.5	200	500	100
1.0	100	200	600

One motor is discovered without a name plate. Determine the probability of the following events.

- (a) The motor has a horsepower rating of 0.5 HP.
- (b) The motor is designed for 240 V single-phase operation.
- (c) The motor is 1.0 HP and is designed for 240 V three-pase operation.
- (d) The motor is 0.1 HP and is designed for 120 V operation.
- 6. A box contains 25 transistors, of which 4 are known to be bad. A transistor is selected at random and tested.
 - (a) What is the probability that it is bad?
 - (b) If the first transistor tests bad what is the probability that a second transistor selected at random will also be bad?
 - (c) If the first transistor tested is good, what is the probability that the second transistor selected at random will be bad?