ELEG3143 Probability and Stochastic Process Course Syllabus

General Information:	Instructor: Jingxian Wu Email: wuj@uark.edu Office Hour: Tu. Th. 10:00-11:00 Lecture location: Bell 2273	Office: Bell 3168 Phone: (479) 575-6584 Lecture: Tu. Th. 11:00-12:15
Required Material:	 Textbook: R. D. Yates and D. Goodman, Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, 3rd Edition, Wiley, 2014. Software: Matlab 	
Reference:	 S. M. Ross, Introduction to Probability Models, 9th Ed., Academic Press, 2007. (optional) A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, 4th Ed., McGraw Hill, 2002. (optional) G. R. Cooper and C. D. McGillem, <i>Probabilistic Methods of Signal and System Analysis</i>, 3rd Ed., Oxford University Press, 1999. (optional) 	
Prerequisites:	 System and Signal Analysis, Calculus I & II Knowledge of integration and differentiation Knowledge of algebra Familiar with Fourier transform and Laplace transform Knowledge of linear time invariant system 	
Learning Objectives:	Probability, random variables, stochastic processes, auto correlation, power spectral density, systems with random inputs in the time and frequency domain, and applications.	
Grading:	 Test 1 23% Test 2 23% Test 3 23% Homework 23% Quiz 8% All homework need to be uploaded to blackboard. Due dates for homework will be strictly enforced. Late submission within one week after due date will receive a 20% grade deduction, and no credit if submitted after one week from the due date. There will be NO make up for quizzes. If for some legitimate reason (sickness, death in the family, etc.), you cannot take a test on the scheduled day, you must notify the instructor prior to the exam. 	
Online	• Course materials (Slides, Homework, Labs,	References, etc) can be found at

Resources:

https://wuj.hosted.uark.edu/teaching/eleg3143/eleg3143.html

	• Please check course website at least once per week for updates.
Academic Honesty:	Each University of Arkansas student is required to be familiar with and abide by the University's 'Academic Integrity Policy' which may be found at http://provost.uark.edu/ Students with questions about how these policies apply to a particular course or assignment should immediately contact their instructor.
Tentative Schedule:	 Week 1 (1/15, 1/17): Ch.1 Introduction to Probability Week 2 (1/22, 1/24): Ch. 1 Introduction to Probability Week 3 (1/29, 1/31): Ch. 1 Introduction to Probability Week 4 (2/5, 2/7): Ch. 2 Discrete Random Variables Week 5 (2/12, 2/14): Ch. 2 Discrete Random Variables Week 6 (2/19, 2/21): Ch. 3 Continuous Random Variables (Test 1 on 2/21) Week 7 (2/26, 2/28): Ch. 3 Continuous Random Variables Week 8 (3/5, 3/7): Ch. 4 Multiple Random Variables Week 9 (3/12, 3/14): Ch. 4 Multiple Random Variables Week 10 (3/19, 3/21): Spring Break Week 11 (3/26, 3/28): Ch. 4 Multiple Random Variables Week 12 (4/2, 4/4): Ch. 5 Elements of Statistics (Test 2 on 4/4) Week 13 (4/9, 4/11): Ch. 6 Stochastic Process Week 15 (4/23, 4/25): Ch. 6 Stochastic Process Week 16 (4/30, 5/2): Ch. 6 Stochastic Process (dead day: 5/3) Test 3 at the Final week

The above schedule is subject to change without prior notice.