Department of Electrical Engineering University of Arkansas

Dr. Jingxian Wu wuj@uark.edu

ARKANSAS

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Laplace Transform
- Applications of Laplace Transform

INTRODUCTION

• Why Laplace transform?

- Frequency domain analysis with Fourier transform is extremely useful for the studies of signals and LTI system.
 - Convolution in time domain → Multiplication in frequency domain.
- Problem: many signals do not have Fourier transform

 $x(t) = \exp(at)u(t), a > 0$

- Laplace transform can solve this problem
 - It exists for most common signals.
 - Follow similar property to Fourier transform
 - It doesn't have any physical meaning; just a mathematical tool to facilitate analysis.

x(t) = tu(t)

 Fourier transform gives us the frequency domain representation of signal.

OUTLINE

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Fourier Transform

• Bilateral Laplace transform (two-sided Laplace transform)

$$X_B(s) = \int_{-\infty}^{+\infty} x(t) \exp(-st) dt, \qquad s = \sigma + j\omega$$

- $s = \sigma + j\omega$ is a complex variable
- s is often called the complex frequency
- Notations:

 $X_B(s) = L[x(t)]$

 $x(t) \leftrightarrow X_B(s)$

- Time domain v.s. S-domain
 - x(t) : a function of time t $\rightarrow x(t)$ is called the time domain signal
 - $-X_B(s)$: a function of s $\rightarrow X_B(s)$ is called the s-domain signal
 - S-domain is also called as the complex frequency domain

LAPLACE TRANSFORM

• Time domain v.s. s-domain

- -x(t): a function of time t $\rightarrow x(t)$ is called the time domain signal
- $-X_B(s)$: a function of s $\rightarrow X_B(s)$ is called the s-domain signal
 - S-domain is also called the complex frequency domain
- By converting the time domain signal into the *s*-domain, we can usually greatly simplify the analysis of the LTI system.
- S-domain system analysis:
 - 1. Convert the time domain signals to the s-domain with the Laplace transform
 - 2. Perform system analysis in the s-domain
 - 3. Convert the s-domain results back to the time-domain

• Example

- Find the Bilateral Laplace transform of $x(t) = \exp(-at)u(t)$

• Region of Convergence (ROC)

- The range of *s* that the Laplace transform of a signal converges.
- The Laplace transform always contains two components
 - The mathematical expression of Laplace transform
 - ROC.

• Example

- Find the Laplace transform of $x(t) = -\exp(-at)u(-t)$

• Example

- Find the Laplace transform of $x(t) = 3\exp(-2t)u(t) + 4\exp(t)u(-t)$

• Unilateral Laplace transform (one-sided Laplace transform)

$$X(s) = \int_{0^{-}}^{+\infty} x(t) \exp(-st) dt$$

- 0^- : The value of x(t) at t = 0 is considered.
- Useful when we dealing with causal signals or causal systems.
 - Causal signal: x(t) = 0, t < 0.
 - Causal system: h(t) = 0, t < 0.
- We are going to simply call unilateral Laplace transform as Laplace transform.

• Example: find the unilateral Laplace transform of the following signals.

$$-1. \quad x(t) = A$$

$$-2. \quad x(t) = \delta(t)$$

• Example

$$-3. \quad x(t) = \exp(j2t)$$

$$-4. \quad x(t) = \cos(2t)$$

$$-5. x(t) = \sin(2t)$$

	Signal	Transform	ROC
	$\delta(t-t_0)$	$\exp(-st_0)$	for all s
	u(t)	$\frac{1}{s}$	$\Re(s)>0$
	$u(t) - u(t - t_0)$	$\frac{1}{s}\left[1 - \exp(-st_0)\right]$	$\Re(s)>0$
	$t^n u(t)$	$\frac{n!}{s^{n+1}}, n = 1, 2, \cdots$	$\Re(s)>0$
	$\exp(-at)u(t)$	$\frac{1}{s+a}$	$\Re(s) > -a$
	$t^n \exp(-at)u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\Re(s) > -a$
	$\cos(\omega_0 t)u(t)$	$\frac{s}{s^2+\omega_0^2}$	$\Re(s) > 0$
	$\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	$\Re(s) > 0$
	$\cos^2(\omega_0 t)u(t)$	$\frac{s^2 + 2\omega_0^2}{s(s^2 + 4\omega_0^2)}$	$\Re(s) > 0$
	$\sin^2(\omega_0 t)u(t)$	$\frac{2\omega_{0}^{2}}{s(s^{2}+4\omega_{0}^{2})}$	$\Re(s) > 0$
ex	$p(-at)\cos(\omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2+\omega_0^2}$	$\Re(s) > -a$
ex	$p(-at)\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(s+a)^2+\omega_0^2}$	$\Re(s) > -a$
	$t\cos(\omega_0 t)u(t)$	$\frac{s^2\!-\!\omega_0^2}{(s^2\!+\!\omega_0^2)^2}$	$\Re(s) > 0$
F.	$t\sin(\omega_0 t)u(t)$	$rac{2\omega_0 s}{(s^2+\omega_0^2)^2}$	$\Re(s)>0$

- Introduction
- Laplace Transform

Properties of Laplace Transform

- Inverse Lapalace Transform
- Applications of Fourier Transform

• Linearity

$$- \text{ If } \qquad x_1(t) \leftrightarrow X_1(s) \qquad x_2(t) \leftrightarrow X_2(s)$$

- Then
$$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s)$$

The ROC is the intersection between the two original signals

• Example

- Find the Laplace transfrom of $[A + B \exp(-bt)]u(t)$

PROPERTIES: TIME SHIFTING

• Time shifting

- If $x(t) \leftrightarrow X(s)$ and $t_0 > 0$
- Then $x(t-t_0)u(t-t_0) \leftrightarrow X(s)\exp(-st_0)$

The ROC remain unchanged

PROPERTIES: SHIFTING IN THE *s* **DOMAIN**

• Shifting in the s domain

$$- \text{If} \qquad x(t) \leftrightarrow X(s) \qquad \qquad \text{Re}(s) > \sigma$$

$$- \text{Then} \qquad y(t) = x(t) \exp(s_0 t) \leftrightarrow X(s - s_0) \qquad \qquad \text{Re}(s) > \sigma + \text{Re}(s_0)$$

• Example

- Find the Laplace transform of

$$x(t) = A \exp(-at) \cos(\omega_0 t) u(t)$$

 \mathbf{D} ().

PROPERTIES: TIME SCALING

• Time scaling

$$- \text{If} \qquad x(t) \leftrightarrow X(s) \qquad \text{Re}\{s\} > \sigma_1$$

$$- \text{Then} \qquad x(at) \leftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right) \qquad \text{Re}\{s\} > a\sigma_1$$

• Example

- Find the Laplace transform of x(t) = u(at)

PROPERTIES: DIFFERENTIATION IN TIME DOMAIN

Differentiation in time domain

- If
$$g(t) \leftrightarrow G(s)$$

- Then $\frac{dg(t)}{dt} \leftrightarrow sG(s) - g(0^{-})$

$$\frac{d^2g(t)}{dt^2} \leftrightarrow s^2 G(s) - sg(0^-) - g'(0^-)$$

$$\frac{d^{n}g(t)}{dt^{n}} \leftrightarrow s^{n}G(s) - s^{n-1}g(0^{-}) - \dots - sg^{(n-2)}(0^{-}) - g^{(n-1)}(0^{-})$$

- Example
 - Find the Laplace transform of $g(t) = \sin^2 \omega t \cdot u(t)$, $g(0^-) = 0$

PROPERTIES: DIFFERENTIATION IN TIME DOMAIN

• Example

- Use Laplace transform to solve the differential equation

y''(t) + 3y'(t) + 2y(t) = 0, $y(0^{-}) = 3$ $y'(0^{-}) = 1$

PROPERTIES: DIFFERENTIATION IN S DOMAIN

• Differentiation in s domain

• Example

- Find the Laplace transform of $t^n u(t)$

• Convolution

- If $x(t) \leftrightarrow X(s)$ $h(t) \leftrightarrow H(s)$

- Then $x(t) \otimes h(t) \leftrightarrow X(s)H(s)$

The ROC of X(s)H(s) is the intersection of the ROCs of X(s)and H(s)

PROPERTIES: INTEGRATION IN TIME DOMAIN

• Integration in time domain

- If
$$x(t) \leftrightarrow X(s)$$

- Then $\int_0^t x(\tau) d\tau \leftrightarrow \frac{1}{s} X(s)$

• Example

- Find the Laplace transform of r(t) = tu(t)

• Example

- Find the convolution

$$rect\left(\frac{t-a}{2a}\right) \otimes rect\left(\frac{t-a}{2a}\right)$$

• Example

- For a LTI system, the input is $x(t) = \exp(-2t)u(t)$, and the output of the system is

$$y(t) = [\exp(-t) + \exp(-2t) - \exp(-3t)]u(t)$$

Find the impulse response of the system

• Example

Find the Laplace transform of the impulse response of the LTI system described by the following differential equation

2y''(t) - 3y'(t) + y(t) = 3x'(t) + x(t)

assume the system was initially relaxed ($y^{(n)}(0) = x^{(n)}(0) = 0$)

• Modulation

- If
$$x(t) \leftrightarrow X(s)$$

- Then
$$\begin{aligned} x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2} \big[X(s+j\omega_0) + X(s-j\omega_0) \big] \\ x(t)\sin(\omega_0 t) \leftrightarrow \frac{j}{2} \big[X(s+j\omega_0) - X(s-j\omega_0) \big] \end{aligned}$$

PROPERTIES: MODULATION

• Example

- Find the Laplace transform of $x(t) = \exp(-\alpha t)\sin(\omega_0 t)u(t)$

PROPERTIES: INITIAL VALUE THEOREM

• Initial value theorem

- If the signal x(t) is infinitely differentiable on an interval around $x(0^+)$ then $x(0^+) = \lim_{s \to \infty} sX(s) \qquad s = \infty \text{ must be in ROC}$

PROPERTIES: INITIAL VALUE THEOREM

• Example

- The Laplace transform of x(t) is Find the value of $x(0^+)$

$$X(s) = \frac{cs+d}{(s-a)(s-b)}$$

PROPERTIES: FINAL VALUE THEOREM

• Final value theorem

- If
$$x(t) \leftrightarrow X(s)$$
- Then: $\lim_{t \to \infty} x(t) \leftrightarrow \lim_{s \to 0} sX(s)$

s = 0 must be in ROC

• Example

- The input x(t) = Au(t) is applied to a system with transfer function $H(s) = \frac{c}{s(s+b)+c}$, find the value of $\lim_{t \to \infty} y(t)$

PROPERTIES

Properties	time-domain	s-domain
Linearity	$\sum_{n=1}^{N} \alpha_n x_n(t)$	$\sum_{n=1}^{N} \alpha_n X_n(s)$
Time shift	$x(t-t_0)u(t-t_0)$	$X(s)\exp(-st_0)$
Frequency shift	$\exp(s_0 t) x(t)$	$X(s-s_0)$
Time scaling	$x(\alpha t), \alpha > 0$	X(s/lpha)/lpha
Multiplication by t	tx(t)	$-rac{dX(s)}{ds}$
Differentiation	dx(t)/dt	$sX(s) - x(0^{-1})$
Integration	$\int_{0^-}^t x(au) d au$	X(s)/s
Modulation	$x(t)\cos(\omega_0 t)$	$\frac{1}{2} \left[X(s - j\omega_0) + X(s + j\omega_0) \right]$
	$x(t)\sin(\omega_0 t)$	$\frac{1}{2j} \left[X(s - j\omega_0) - X(s + j\omega_0) \right]$
Convolution	$x(t)\otimes h(t)$	X(S)H(S)
Initial value	$x(0^+)$	$\lim_{s \to \infty} sX(s)$
Final value	$\lim_{t\to\infty} x(t)$	$\lim_{s \to 0} sX(s)$

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Fourier Transform

Inverse Laplace transform

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) ds$$

- Evaluation of the above integral requires the use of contour integration in the complex plan → difficult.
- Inverse Laplace transform: special case
 - In many cases, the Laplace transform can be expressed as a rational function of s

$$X(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

- Procedure of Inverse Laplace Transform
 - 1. Partial fraction expansion of *X*(*s*)
 - 2. Find the inverse Laplace transform through Laplace transform table.

• Review: Partial Fraction Expansion with non-repeated linear factors

$$X(s) = \frac{A}{s - a_1} + \frac{B}{s - a_2} + \frac{C}{s - a_3}$$

 $A = (s - a_1)X(s)\Big|_{s = a_1} \qquad B = (s - a_2)X(s)\Big|_{s = a_2} \qquad C = (s - a_3)X(s)\Big|_{s = a_3}$

• Example

- Find the inverse Laplace transform of $X(s) = \frac{2s+1}{s^3 + 3s^2 - 4s}$

• Example

- Find the Inverse Laplace transform of

• If the numerator polynomial has order higher than or equal to the order of denominator polynomial, we need to rearrange it such that the denominator polynomial has a higher order.

• Partial Fraction Expansion with repeated linear factors

$$X(s) = \frac{1}{(s-a)^{2}(s-b)} = \frac{A_{2}}{(s-a)^{2}} + \frac{A_{1}}{s-a} + \frac{B}{s-b}$$
$$A_{2} = (s-a)^{2} X(s)\Big|_{s=a} \qquad A_{1} = \frac{d}{ds} \left[(s-a)^{2} X(s) \Big|_{s=a} \qquad B = (s-b) X(s) \Big|_{s=b}$$

High-order repeated linear factors

$$X(s) = \frac{1}{(s-a)^{N}(s-b)} = \frac{A_{1}}{s-a} + \frac{A_{2}}{(s-a)^{2}} + \dots + \frac{A_{N}}{(s-a)^{N}} + \frac{B}{s-b}$$

$$A_{k} = \frac{1}{(N-k)!} \frac{d^{N-k}}{ds^{N-k}} \left[(s-a)^{N} X(s) \right]_{s=a}$$

$$k=1,\cdots,N$$

$$B = (s - b)X(s)\big|_{s=b}$$

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Laplace Transform

• LTI system

- System equation: a differential equation describes the input output relationship of the system.

$$y^{(N)}(t) + a_{N-1}y^{(N-1)}(t) + \dots + a_1y^{(1)}(t) + a_0y(t) = b_M x^{(M)}(t) + \dots + b_1x^{(1)}(t) + b_0x(t)$$
$$y^{(N)}(t) + \sum_{n=0}^{N-1} a_n y^{(n)}(t) = \sum_{m=0}^{M} b_m x^{(m)}(t)$$

- S-domain representation

$$\left[s^{N} + \sum_{n=0}^{N-1} a_{n} s^{n}\right] Y(s) = \left[\sum_{m=0}^{M} b_{m} s^{m}\right] X(s)$$

– Transfer function

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{m=0}^{M} b_m s^m}{s^N + \sum_{n=0}^{N-1} a_n s^n}$$

• Simulation diagram (first canonical form)

Simulation diagram

• Example

- Show the first canonical realization of the system with transfer function $s^2 - 3s + 2$

$$H(S) = \frac{s^2 - 3s + 2}{s^3 + 6s^2 + 11s + 6}$$

APPLICATION: COMBINATIONS OF SYSTEMS

Combination of systems

- Cascade of systems

$H(S) = H_1(s)H_2(s)$

• Example

- Represent the system to the cascade of subsystems.

$$H(S) = \frac{s^2 - 3s + 2}{s^3 + 6s^2 + 11s + 6}$$

• Example:

- Find the transfer function of the system

LTI system

• Poles and zeros

$$H(s) = \frac{(s - z_M)(s - z_{M-1})\cdots(s - z_1)}{(s - p_N)(s - p_{N-1})\cdots(s - p_1)}$$

- Zeros:
$$z_1, z_2, \cdots, z_M$$

- Poles: p_1, p_2, \cdots, p_N

Review: BIBO Stable

- Bounded input always leads to bounded output

 $\int_{-\infty}^{+\infty} |h(t)| \, dt < \infty$

• The positions of poles of H(s) in the s-domain determine if a system is BIBO stable.

$$H(s) = \frac{A_1}{s - s_1} + \frac{A_2}{(s - s_2)^m} + \dots + \frac{A_N}{s - s_N}$$

- Simple poles: the order of the pole is 1, e.g. $s_1 = s_N$
- Multiple-order poles: the poles with higher order. E.g. s_2

• Case 1: simple poles in the left half plane

• If all the poles of the system are on the left half plane, then the system is stable.

• Case 2: Simple poles on the right half plane

• If at least one pole of the system is on the right half plane, then the system is unstable.

• Case 3: Simple poles on the imaginary axis

$$\frac{1}{\left(s-\sigma_{k}\right)^{2}+\omega_{k}^{2}}=\frac{1}{\left(s-\sigma_{k}+j\omega_{k}\right)\left(s-\sigma_{k}-j\omega_{k}\right)}\qquad\sigma_{k}=0$$

$$h_k(t) = \frac{1}{\omega_k} \sin(\omega_k t) u(t)$$

• If the pole of the system is on the imaginary axis, it's unstable.

- **Case 4: multiple-order poles in the left half plane** $h_k(t) = \frac{1}{\omega_k} t^m \exp(\sigma_k t) \sin(\omega_k t) u(t) \qquad \sigma_k < 0 \qquad \text{stable}$
- **Case 5: multiple-order poles in the right half plane** $h_k(t) = \frac{1}{\omega_k} t^m \exp(\sigma_k t) \sin(\omega_k t) u(t) \qquad \sigma_k > 0 \qquad \text{unstable}$
- **Case 6: multiple-order poles on the imaginary axis** $h_k(t) = \frac{1}{t^m} \sin(\omega_k t) u(t)$ **unstable**

• Example:

- Check the stability of the following system.

$$H(s) = \frac{3s+2}{s^2 + 6s + 13}$$

