Department of Electrical Engineering University of Arkansas

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Laplace Transform

Dr. Jingxian Wu
wuj@uark.edu

OUTLINE

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Laplace Transform
- Applications of Laplace Transform

INTRODUCTION

- Why Laplace transform?
- Frequency domain analysis with Fourier transform is extremely useful for the studies of signals and LTI system.
- Convolution in time domain \rightarrow Multiplication in frequency domain.
- Problem: many signals do not have Fourier transform

$$
x(t)=\exp (a t) u(t), a>0 \quad x(t)=t u(t)
$$

- Laplace transform can solve this problem
- It exists for most common signals.
- Follow similar property to Fourier transform
- It doesn't have any physical meaning; just a mathematical tool to facilitate analysis.
- Fourier transform gives us the frequency domain representation of signal.

OUTLINE

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Fourier Transform

LAPLACE TRANSFORM: BILATERAL LAPLACE TRANSFORM

- Bilateral Laplace transform (two-sided Laplace transform)

$$
X_{B}(s)=\int_{-\infty}^{+\infty} x(t) \exp (-s t) d t, \quad s=\sigma+j \omega
$$

- $s=\sigma+j \omega$ is a complex variable
- s is often called the complex frequency
- Notations: $\quad X_{B}(s)=L[x(t)]$

$$
x(t) \leftrightarrow X_{B}(s)
$$

- Time domain v.s. S-domain
$-x(t)$: a function of time $\mathrm{t} \rightarrow x(t)$ is called the time domain signal
- $X_{B}(s)$: a function of $\mathrm{s} \rightarrow X_{B}(s)$ is called the s-domain signal
- S-domain is also called as the complex frequency domain

LAPLACE TRANSFORM

- Time domain v.s. s-domain
$-x(t)$: a function of time $\mathrm{t} \rightarrow x(t)$ is called the time domain signal
$-X_{B}(s):$ a function of $\mathrm{s} \rightarrow X_{B}(s)$ is called the s-domain signal
- S-domain is also called the complex frequency domain
- By converting the time domain signal into the s-domain, we can usually greatly simplify the analysis of the LTI system.
- S-domain system analysis:
- 1. Convert the time domain signals to the s-domain with the Laplace transform
- 2. Perform system analysis in the s-domain
- 3. Convert the s-domain results back to the time-domain

LAPLACE TRANSFORM: BILATERAL LAPLACE TRANSFORM

- Example
- Find the Bilateral Laplace transform of $\quad x(t)=\exp (-a t) u(t)$
- Region of Convergence (ROC)
- The range of s that the Laplace transform of a signal converges.
- The Laplace transform always contains two components
- The mathematical expression of Laplace transform
- ROC.

LAPLACE TRANSFORM: BILATERAL LAPLACE TRANSFORM

- Example
- Find the Laplace transform of $\quad x(t)=-\exp (-a t) u(-t)$

$X_{B}(s)=\frac{1}{s+a}, \Re(s)>-a$

$$
X_{B}(s)=\frac{1}{s+a}, \Re(s)<-a
$$

LAPLACE TRANSFORM: BILATERAL LAPLACE TRANSFORM

- Example
- Find the Laplace transform of $x(t)=3 \exp (-2 t) u(t)+4 \exp (t) u(-t)$

LAPLACE TRANSFORM: UNILATERAL LAPLACE TRANSFORM

- Unilateral Laplace transform (one-sided Laplace transform)

$$
X(s)=\int_{0^{-}}^{+\infty} x(t) \exp (-s t) d t
$$

-0^{-}:The value of $x(t)$ at $t=0$ is considered.

- Useful when we dealing with causal signals or causal systems.
- Causal signal: $x(t)=0, t<0$.
- Causal system: $h(t)=0, t<0$.
- We are going to simply call unilateral Laplace transform as Laplace transform.

LAPLACE TRANSFORM: UNILATERAL LAPLACE TRANSFORM

- Example: find the unilateral Laplace transform of the following signals.
- 1. $x(t)=A$
- 2. $x(t)=\delta(t)$

LAPLACE TRANSFORM: UNILATERAL LAPLACE TRANSFORM

- Example
- 3. $x(t)=\exp (j 2 t)$
- 4. $\quad x(t)=\cos (2 t)$
- 5. $x(t)=\sin (2 t)$

LAPLACE TRANSFORM: UNILATERAL LAPLACE TRANSFORM

	Signal	Transform	ROC
	$\delta\left(t-t_{0}\right)$	$\exp \left(-s t_{0}\right)$	for all s
	$u(t)$	$\frac{1}{s}$	$\Re(s)>0$
	$u(t)-u\left(t-t_{0}\right)$	$\frac{1}{s}\left[1-\exp \left(-s t_{0}\right)\right]$	$\Re(s)>0$
	$t^{n} u(t)$	$\frac{n!}{s^{n+1}}, n=1,2, \cdots$	$\Re(s)>0$
	$\exp (-a t) u(t)$	$\frac{1}{s+a}$	$\Re(s)>-a$
	$t^{n} \exp (-a t) u(t)$	$\frac{n!}{(s+a)^{n+1}}$	$\Re(s)>-a$
	$\cos \left(\omega_{0} t\right) u(t)$	$\frac{s}{s^{2}+\omega_{0}^{2}}$	$\Re(s)>0$
	$\sin \left(\omega_{0} t\right) u(t)$	$\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}}$	$\Re(s)>0$
	$\cos ^{2}\left(\omega_{0} t\right) u(t)$	$\frac{s^{2}+2 \omega_{0}^{2}}{s\left(s^{2}+4 \omega_{0}^{2}\right)}$	$\Re(s)>0$
	$\sin ^{2}\left(\omega_{0} t\right) u(t)$	$\frac{2 \omega_{0}^{2}}{s\left(s^{2}+4 \omega_{0}^{2}\right)}$	$\Re(s)>0$
	$\exp (-a t) \cos \left(\omega_{0} t\right) u(t)$	$\frac{s+a}{(s+a)^{2}+\omega_{0}^{2}}$	$\Re(s)>-a$
	$\exp (-a t) \sin \left(\omega_{0} t\right) u(t)$	$\frac{\omega_{0}}{(s+a)^{2}+\omega_{0}^{2}}$	$\Re(s)>-a$
	$t \cos \left(\omega_{0} t\right) u(t)$	$\frac{s^{2}-\omega_{0}^{2}}{\left(s^{2}+\omega_{0}^{2}\right)^{2}}$	$\Re(s)>0$
ARKANSAS	$t \sin \left(\omega_{0} t\right) u(t)$	$\frac{2 \omega_{0} s}{\left(s^{2}+\omega_{0}^{2}\right)^{2}}$	$\Re(s)>0$

OUTLINE

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Fourier Transform

PROPERTIES: LINEARITY

- Linearity
- If

$$
x_{1}(t) \leftrightarrow X_{1}(s) \quad x_{2}(t) \leftrightarrow X_{2}(s)
$$

- Then $\quad a x_{1}(t)+b x_{2}(t) \leftrightarrow a X_{1}(s)+b X_{2}(s)$

The ROC is the intersection between the two original signals

- Example
- Find the Laplace transfrom of $[A+B \exp (-b t)] u(t)$

PROPERTIES: TIME SHIFTING

- Time shifting
- If

$$
x(t) \leftrightarrow X(s) \quad \text { and } \quad t_{0}>0
$$

- Then $\quad x\left(t-t_{0}\right) u\left(t-t_{0}\right) \leftrightarrow X(s) \exp \left(-s t_{0}\right)$

The ROC remain unchanged

PROPERTIES: SHIFTING IN THE \boldsymbol{s} DOMAIN

- Shifting in the s domain
- If $\quad x(t) \leftrightarrow X(s)$
- Then $y(t)=x(t) \exp \left(s_{0} t\right) \leftrightarrow X\left(s-s_{0}\right)$

$$
\operatorname{Re}(s)>\sigma
$$

$\operatorname{Re}(s)>\sigma+\operatorname{Re}\left(s_{0}\right)$

- Example
- Find the Laplace transform of $\quad x(t)=A \exp (-a t) \cos \left(\omega_{0} t\right) u(t)$

PROPERTIES: TIME SCALING

- Time scaling
- If

$$
x(t) \leftrightarrow X(s)
$$

$$
\operatorname{Re}\{s\}>\sigma_{1}
$$

- Then

$$
x(a t) \leftrightarrow \frac{1}{a} X\left(\frac{s}{a}\right) \quad \operatorname{Re}\{s\}>a \sigma_{1}
$$

- Example
- Find the Laplace transform of $\quad x(t)=u(a t)$

PROPERTIES: DIFFERENTIATION IN TIME DOMAIN

- Differentiation in time domain
- If $\quad g(t) \leftrightarrow G(s)$
- Then $\quad \frac{d g(t)}{d t} \leftrightarrow s G(s)-g\left(0^{-}\right)$

$$
\begin{aligned}
\frac{d^{2} g(t)}{d t^{2}} & \leftrightarrow s^{2} G(s)-s g\left(0^{-}\right)-g^{\prime}\left(0^{-}\right) \\
\frac{d^{n} g(t)}{d t^{n}} & \leftrightarrow s^{n} G(s)-s^{n-1} g\left(0^{-}\right)-\cdots-s g^{(n-2)}\left(0^{-}\right)-g^{(n-1)}\left(0^{-}\right)
\end{aligned}
$$

- Example
- Find the Laplace transform of $g(t)=\sin ^{2} \omega t \cdot u(t), \quad g\left(0^{-}\right)=0$

PROPERTIES: DIFFERENTIATION IN TIME DOMAIN

- Example
- Use Laplace transform to solve the differential equation

$$
y^{\prime \prime}(t)+3 y^{\prime}(t)+2 y(t)=0, \quad y\left(0^{-}\right)=3 \quad y^{\prime}\left(0^{-}\right)=1
$$

PROPERTIES: DIFFERENTIATION IN S DOMAIN

- Differentiation in s domain
- If

$$
x(t) \leftrightarrow X(s)
$$

- Then

$$
(-t)^{n} x(t) \leftrightarrow \frac{d^{n} X(s)}{d s^{n}}
$$

- Example
- Find the Laplace transform of $t^{n} u(t)$

PROPERTIES: CONVOLUTION

- Convolution
- If $\quad x(t) \leftrightarrow X(s) \quad h(t) \leftrightarrow H(s)$
- Then $\quad x(t) \otimes h(t) \leftrightarrow X(s) H(s)$

The ROC of $X(s) H(s)$ is the intersection of the ROCs of $X(s)$ and $H(s)$

PROPERTIES: INTEGRATION IN TIME DOMAIN

- Integration in time domain
- If $\quad x(t) \leftrightarrow X(s)$
- Then $\quad \int_{0}^{t} x(\tau) d \tau \leftrightarrow \frac{1}{S} X(s)$
- Example
- Find the Laplace transform of $r(t)=t u(t)$

PROPERTIES: CONVOLUTION

- Example
- Find the convolution $\quad \operatorname{rect}\left(\frac{t-a}{2 a}\right) \otimes \operatorname{rect}\left(\frac{t-a}{2 a}\right)$

PROPERTIES: CONVOLUTION

- Example
- For a LTI system, the input is $x(t)=\exp (-2 t) u(t)$, and the output of the system is

$$
y(t)=[\exp (-t)+\exp (-2 t)-\exp (-3 t)] u(t)
$$

Find the impulse response of the system

PROPERTIES: CONVOLUTION

- Example
- Find the Laplace transform of the impulse response of the LTI system described by the following differential equation

$$
2 y^{\prime \prime}(t)-3 y^{\prime}(t)+y(t)=3 x^{\prime}(t)+x(t)
$$

assume the system was initially relaxed $\left(y^{(n)}(0)=x^{(n)}(0)=0\right)$

PROPERTIES: MODULATION

- Modulation
- If $\quad x(t) \leftrightarrow X(s)$
- Then $\quad x(t) \cos \left(\omega_{0} t\right) \leftrightarrow \frac{1}{2}\left[X\left(s+j \omega_{0}\right)+X\left(s-j \omega_{0}\right)\right]$

$$
x(t) \sin \left(\omega_{0} t\right) \leftrightarrow \frac{j}{2}\left[X\left(s+j \omega_{0}\right)-X\left(s-j \omega_{0}\right)\right]
$$

PROPERTIES: MODULATION

- Example
- Find the Laplace transform of $\quad x(t)=\exp (-a t) \sin \left(\omega_{0} t\right) u(t)$

PROPERTIES: INITIAL VALUE THEOREM

- Initial value theorem
- If the signal $x(t)$ is infinitely differentiable on an interval around $x\left(0^{+}\right)$ then

$$
x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s) \quad s=\infty \quad \text { must be in ROC }
$$

- The behavior of $x(t)$ for small t is determined by the behavior of $\mathrm{X}(\mathrm{s})$ for large s .

PROPERTIES: INITIAL VALUE THEOREM

- Example
- The Laplace transform of $x(t)$ is Find the value of $x\left(0^{+}\right)$

$$
X(s)=\frac{c s+d}{(s-a)(s-b)}
$$

PROPERTIES: FINAL VALUE THEOREM

- Final value theorem
- If $\quad x(t) \leftrightarrow X(s)$
- Then: $\quad \lim _{t \rightarrow \infty} x(t) \leftrightarrow \lim _{s \rightarrow 0} s X(s)$
$s=0$ must be in ROC
- Example
- The input $x(t)=A u(t)$ is applied to a system with transfer function $H(s)=\frac{c}{s(s+b)+c} \quad$, find the value of $\lim _{t \rightarrow \infty} y(t)$

PROPERTIES

Properties	time-domain	s-domain
Linearity	$\sum_{n=1}^{N} \alpha_{n} x_{n}(t)$	$\sum_{n=1}^{N} \alpha_{n} X_{n}(s)$
Time shift	$x\left(t-t_{0}\right) u\left(t-t_{0}\right)$	$X(s) \exp \left(-s t_{0}\right)$
Frequency shift	$\exp \left(s_{0} t\right) x(t)$	$X\left(s-s_{0}\right)$
Time scaling	$x(\alpha t), \alpha>0$	$X(s / \alpha) / \alpha$
Multiplication by t	$t x(t)$	$-\frac{d X(s)}{d s}$
Differentiation	$d x(t) / d t$	$s X(s)-x\left(0^{-1}\right)$
Integration	$\int_{0^{-}}^{t} x(\tau) d \tau$	$X(s) / s$
Modulation	$x(t) \cos \left(\omega_{0} t\right)$	$\frac{1}{2}\left[X\left(s-j \omega_{0}\right)+X\left(s+j \omega_{0}\right)\right]$
	$x(t) \sin \left(\omega_{0} t\right)$	$\frac{1}{2 j}\left[X\left(s-j \omega_{0}\right)-X\left(s+j \omega_{0}\right)\right]$
Convolution	$x(t) \otimes h(t)$	$X(S) H(S)$
Initial value	$x\left(0^{+}\right)$	\lim
Final value	$\lim t \rightarrow \infty x(t)$	$\lim x_{s \rightarrow 0} s X(s)$

OUTLINE

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Fourier Transform

INVERSE LAPLACE TRANSFORM

- Inverse Laplace transform

$$
x(t)=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} X(s) \exp (s t) d s
$$

- Evaluation of the above integral requires the use of contour integration in the complex plan \rightarrow difficult.
- Inverse Laplace transform: special case
- In many cases, the Laplace transform can be expressed as a rational function of s

$$
X(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

- Procedure of Inverse Laplace Transform
- 1. Partial fraction expansion of $X(s)$
- 2. Find the inverse Laplace transform through Laplace transform table.

INVERSE LAPLACE TRANSFORM

- Review: Partial Fraction Expansion with non-repeated linear factors

$$
\begin{gathered}
X(s)=\frac{A}{s-a_{1}}+\frac{B}{s-a_{2}}+\frac{C}{s-a_{3}} \\
A=\left.\left(s-a_{1}\right) X(s)\right|_{s=a_{1}} \quad B=\left.\left(s-a_{2}\right) X(s)\right|_{s=a_{2}} \quad C=\left.\left(s-a_{3}\right) X(s)\right|_{s=a_{3}}
\end{gathered}
$$

- Example
- Find the inverse Laplace transform of $\quad X(s)=\frac{2 s+1}{s^{3}+3 s^{2}-4 s}$

INVERSE LAPLACE TRANSFORM

- Example
- Find the Inverse Laplace transform of

$$
X(s)=\frac{2 s^{2}}{s^{2}+3 s+2}
$$

- If the numerator polynomial has order higher than or equal to the order of denominator polynomial, we need to rearrange it such that the denominator polynomial has a higher order.

INVERSE LAPLACE TRANSFORM

- Partial Fraction Expansion with repeated linear factors

$$
\begin{gathered}
X(s)=\frac{1}{(s-a)^{2}(s-b)}=\frac{A_{2}}{(s-a)^{2}}+\frac{A_{1}}{s-a}+\frac{B}{s-b} \\
A_{2}=\left.(s-a)^{2} X(s)\right|_{s=a} \quad A_{1}=\frac{d}{d s}\left[\left.(s-a)^{2} X(s)\right|_{s=a} \quad B=\left.(s-b) X(s)\right|_{s=b}\right.
\end{gathered}
$$

INVERSE LAPLACE TRANSFORM

- High-order repeated linear factors

$$
\begin{aligned}
& X(s)=\frac{1}{(s-a)^{N}(s-b)}=\frac{A_{1}}{s-a}+\frac{A_{2}}{(s-a)^{2}}+\cdots+\frac{A_{N}}{(s-a)^{N}}+\frac{B}{s-b} \\
& A_{k}=\frac{1}{(N-k)!} \frac{d^{N-k}}{d s^{N-k}}\left[\left.(s-a)^{N} X(s)\right|_{s=a} \quad k=1, \cdots, N\right. \\
& B=\left.(s-b) X(s)\right|_{s=b}
\end{aligned}
$$

OUTLINE

- Introduction
- Laplace Transform
- Properties of Laplace Transform
- Inverse Lapalace Transform
- Applications of Laplace Transform

APPLICATION: LTI SYSTEM REPRESENTATION

- LTI system
- System equation: a differential equation describes the input output relationship of the system.

$$
\begin{gathered}
y^{(N)}(t)+a_{N-1} y^{(N-1)}(t)+\cdots+a_{1} y^{(1)}(t)+a_{0} y(t)=b_{M} x^{(M)}(t)+\cdots+b_{1} x^{(1)}(t)+b_{0} x(t) \\
y^{(N)}(t)+\sum_{n=0}^{N-1} a_{n} y^{(n)}(t)=\sum_{m=0}^{M} b_{m} x^{(m)}(t)
\end{gathered}
$$

- S-domain representation

$$
\left[s^{N}+\sum_{n=0}^{N-1} a_{n} s^{n}\right] Y(s)=\left[\sum_{m=0}^{M} b_{m} s^{m}\right] X(s)
$$

- Transfer function

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{\sum_{m=0}^{M} b_{m} s^{m}}{s^{N}+\sum_{n=0}^{N-1} a_{n} s^{n}}
$$

APPLICATION: LTI SYSTEM REPRESENTATION

- Simulation diagram (first canonical form)

Simulation diagram

APPLICATION: LTI SYSTEM REPRESENTATION

- Example
- Show the first canonical realization of the system with transfer function

$$
H(S)=\frac{s^{2}-3 s+2}{s^{3}+6 s^{2}+11 s+6}
$$

APPLICATION: COMBINATIONS OF SYSTEMS

- Combination of systems
- Cascade of systems

$$
H(S)=H_{1}(s) H_{2}(s)
$$

- Parallel systems

APPLICATION: LTI SYSTEM REPRESENTATION

- Example
- Represent the system to the cascade of subsystems.

$$
H(S)=\frac{s^{2}-3 s+2}{s^{3}+6 s^{2}+11 s+6}
$$

APPLICATION: LTI SYSTEM REPRESENTATION

- Example:
- Find the transfer function of the system

LTI system

APPLICATION: LTI SYSTEM REPRESENTATION

- Poles and zeros

$$
H(s)=\frac{\left(s-z_{M}\right)\left(s-z_{M-1}\right) \cdots\left(s-z_{1}\right)}{\left(s-p_{N}\right)\left(s-p_{N-1}\right) \cdots\left(s-p_{1}\right)}
$$

- Zeros: $\quad z_{1}, z_{2}, \cdots, z_{M}$
- Poles: $\quad p_{1}, p_{2}, \cdots, p_{N}$

APPLICATION: STABILITY

- Review: BIBO Stable
- Bounded input always leads to bounded output

$$
\int_{-\infty}^{+\infty}|h(t)| d t<\infty
$$

- The positions of poles of $\mathbf{H}(\mathbf{s})$ in the s-domain determine if a system is BIBO stable.

$$
H(s)=\frac{A_{1}}{s-s_{1}}+\frac{A_{2}}{\left(s-s_{2}\right)^{m}}+\cdots+\frac{A_{N}}{s-s_{N}}
$$

- Simple poles: the order of the pole is 1, e.g. $s_{1} s_{N}$
- Multiple-order poles: the poles with higher order. E.g. s_{2}

APPLICATION: STABILITY

- Case 1: simple poles in the left half plane

$$
\begin{gathered}
\frac{1}{\left(s-\sigma_{k}\right)^{2}+\omega_{k}^{2}}=\frac{1}{\left(s-\sigma_{k}+j \omega_{k}\right)\left(s-\sigma_{k}-j \omega_{k}\right)} \quad \sigma_{k}<0 \\
p_{1}=\sigma_{k}-j \omega_{k} \quad p_{2}=\sigma_{k}+j \omega_{k}
\end{gathered}
$$

$$
h_{k}(t)=\frac{1}{\omega_{k}} \exp \left(\sigma_{k} t\right) \sin \left(\omega_{k} t\right) u(t)
$$

$$
\int_{-\infty}^{+\infty}\left|h_{k}(t)\right| d t=
$$

Impulse response

- If all the poles of the system are on the left half plane, then the system is stable.

APPLICATION: STABILITY

- Case 2: Simple poles on the right half plane

$$
\begin{gathered}
\frac{1}{\left(s-\sigma_{k}\right)^{2}+\omega_{k}^{2}}=\frac{1}{\left(s-\sigma_{k}+j \omega_{k}\right)\left(s-\sigma_{k}-j \omega_{k}\right)} \quad \sigma_{k}>0 \\
p_{1}=\sigma_{k}+j \omega_{k} \quad p_{2}=\sigma_{k}-j \omega_{k}
\end{gathered}
$$

Impulse response

- If at least one pole of the system is on the right half plane, then the system is unstable.

APPLICATION: STABILITY

- Case 3: Simple poles on the imaginary axis

$$
\begin{aligned}
& \frac{1}{\left(s-\sigma_{k}\right)^{2}+\omega_{k}^{2}}=\frac{1}{\left(s-\sigma_{k}+j \omega_{k}\right)\left(s-\sigma_{k}-j \omega_{k}\right)} \quad \sigma_{k}=0 \\
& h_{k}(t)=\frac{1}{\omega_{k}} \sin \left(\omega_{k} t\right) u(t)
\end{aligned}
$$

- If the pole of the system is on the imaginary axis, it's unstable.

APPLICATION: STABILITY

- Case 4: multiple-order poles in the left half plane $h_{k}(t)=\frac{1}{\omega_{k}} t^{m} \exp \left(\sigma_{k} t\right) \sin \left(\omega_{k} t\right) u(t) \quad \sigma_{k}<0 \quad$ stable
- Case 5: multiple-order poles in the right half plane $h_{k}(t)=\frac{1}{\omega_{k}} t^{m} \exp \left(\sigma_{k} t\right) \sin \left(\omega_{k} t\right) u(t) \quad \sigma_{k}>0 \quad$ unstable
- Case 6: multiple-order poles on the imaginary axis $h_{k}(t)=\frac{1}{\omega_{k}} t^{m} \sin \left(\omega_{k} t\right) u(t)$
unstable

APPLICATION: STABILITY

- Example:
- Check the stability of the following system.

$$
H(s)=\frac{3 s+2}{s^{2}+6 s+13}
$$

