Department of Electrical Engineering University of Arkansas

Dr. Jingxian Wu wuj@uark.edu

ARKANSAS

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

INTRODUCTION: MOTIVATION

• Motivation:

Fourier series: periodic signals can be decomposed as the summation of orthogonal complex exponential signals

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp[jn\omega_0 t] \qquad \qquad c_n = \frac{1}{T} \int_0^T x(t) \exp[jn\omega_0 t] dt$$

• each harmonic contains a unique frequency: n/T

• time domain $\leftarrow \rightarrow$ frequency domain $(T = \infty)$

How about aperiodic signals

INTRODUCTION: TRANSFER FUNCTION

• System transfer function

$$H(\omega) = \int_{-\infty}^{+\infty} h(t) \exp[j\omega t] dt$$

• System with periodic inputs

OUTLINE

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

Fourier Transform

$$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

- given x(t), we can find its Fourier transform $X(\omega)$

Inverse Fourier Transform

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$

- given $X(\omega)$, we can find the time domain signal x(t)
- signal is decomposed into the "weighted summation" of complex exponential functions. (integration is the extreme case of summation)

• Example

• Example

- Find the Fourier transform of

$$x(t) = \exp(-a \mid t \mid) \qquad a > 0$$

• Example

- Find the Fourier transform of $x(t) = \exp(-at)u(t)$ a > 0

• Example

- Find the Fourier transform of

 $x(t) = \delta(t - a)$

FOURIER TRANSFORM: TABLE

x(t)	$X(\omega)$	x(t)	$X(\omega)$
1	$2\pi\delta(\omega)$	$\exp(-at)u(t), \Re(a) > 0$	$\frac{1}{a+j\omega}$
u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$	$t\exp(-at)u(t), \Re(a)>0$	$\frac{1}{(a+j\omega)^2}$
$\delta(t)$	1	$\frac{t^{n-1}}{(n-1)!}\exp(-at)u(t), \ \Re(a) > 0$	$\frac{1}{(a+j\omega)^n}$
$\delta(t-t_0)$	$\exp(-j\omega t_0)$	$\exp(-a t), a > 0$	$\frac{2a}{a^2 + \omega^2}$
$\exp(j\omega_0 t)$	$2\pi\delta(\omega-\omega_0)$	$ t \exp(-a t), \Re(a) > 0$	$rac{4aj\omega}{a^2+\omega^2}$
$\operatorname{rect}(t/\tau)$	$ au \mathrm{sinc} rac{\omega au}{2\pi}$		
$\operatorname{sinc}(t)$	$\operatorname{rect}\left(\frac{\omega}{2\pi}\right)$		
$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$		
$\cos(\omega_0 t)$	$\pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right]$		
$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$		

• The existence of Fourier transform

- Not all signals have Fourier transform
- If a signal have Fourier transform, it must satisfy the following two conditions
 - 1. x(t) is absolutely integrable $\int_{-\infty}^{+\infty} |x(t)| dt < \infty$
 - 2. x(t) is well behaved
 - The signal has finite number of discontinuities, minima, and maxima within any finite interval of time.
- Example

 $- x(t) = \exp(t)u(t)$

- Introduction
- Fourier Transform

• **Properties of Fourier Transform**

• Applications of Fourier Transform

• Linearity

- If $x_1(t) \Leftrightarrow X_1(\omega)$ $x_2(t) \Leftrightarrow X_2(\omega)$

- then $ax_1(t) + bx_2(t) \Leftrightarrow aX_1(\omega) + bX_2(\omega)$

• Example

- Find the Fourier transform of $x(t) = 2rect(t/\tau) + 3\exp(-2t)u(t) + 4\delta(t)$

• Time shift

- If $x(t) \Leftrightarrow X(\omega)$

- Then
$$x(t-t_0) \Leftrightarrow X(\omega) \exp[-j\omega t_0]$$

phase shift

• Review: complex number

$$c = |c| e^{j\theta} = |c| \cos(\theta) + j |c| \sin(\theta) = a + jb$$

$$a = |c| \cos \theta \qquad b = |c| \sin \theta$$

$$|c| = \sqrt{a^2 + b^2} \qquad \theta = a \tan(b/a)$$

- Phase shift of a complex number c by $\theta_0 : c \exp(j\theta_0) = |c| \exp[j(\theta + \theta_0)]$

time shift in time domain → frequency shift in frequency domain

PROPERTY: TIME SHIFT

• Example:

- Find the Fourier transform of

$$x(t) = rect[t-2]$$

• Time scaling

- If $x(t) \Leftrightarrow X(\omega)$

- Then
$$x(at) \Leftrightarrow \frac{1}{|a|} X\left(\frac{\omega}{a}\right)$$

• Example

- Let $X(\omega) = rect[(\omega-1)/2]$, find the Fourier transform of x(-2t+4)

PROPERTY: SYMMETRY

• Symmetry

- If $x(t) \Leftrightarrow X(\omega)$, and x(t) is a real-valued time signal

- Then
$$X(-\omega) = X^*(\omega)$$

PROPERTY: DIFFERENTIATION

• Differentiation

- If
$$x(t) \Leftrightarrow X(\omega)$$

- Then
$$\frac{dx(t)}{dt} \Leftrightarrow j\omega X(\omega)$$

$$\frac{d^n x(t)}{dt^n} \Leftrightarrow (j\omega)^n X(\omega)$$

• Example - Let $X(\omega) = rect[(\omega - 1)/2]$, find the Fourier transform of $\frac{dx(t)}{dt}$

PROPERTY: DIFFERENTIATION

• Example

- Find the Fourier transform of x(t) = sgn(t)

(Hint:
$$\frac{d}{dt} \left[\frac{1}{2} \operatorname{sgn}(t) \right] = \delta(t)$$
)

• Convolution

- If $x(t) \Leftrightarrow X(\omega)$, $h(t) \Leftrightarrow H(\omega)$

- Then $x(t) \otimes h(t) \Leftrightarrow X(\omega)H(\omega)$

PROPERTY: CONVOLUTION

• Example

- An LTI system has impulse response $h(t) = \exp(-at)u(t)$ If the input is $x(t) = (a-b)\exp(-bt)u(t) + (c-a)\exp(-ct)u(t)$ Find the output (a > 0, b > 0, c > 0)

PROPERTY: MULTIPLICATION

• Multiplication

- If $x(t) \Leftrightarrow X(\omega)$, $m(t) \Leftrightarrow M(\omega)$

- Then
$$x(t)m(t) \Leftrightarrow \frac{1}{2\pi} [X(\omega) \otimes M(\omega)]$$

PROPERTY: DUALITY

• Duality

- If
$$g(t) \Leftrightarrow G(\omega)$$

- Then
$$G(t) \Leftrightarrow 2\pi g(-\omega)$$

PROPERTY: DUALITY

• Example

– Find the Fourier transform of *h*

$$h(t) = Sa\left(\frac{t}{2}\right)$$

(recall:
$$\operatorname{rect}(t/\tau) \Leftrightarrow \tau \operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right)$$
)

PROPERTY: DUALITY

• Example

- Find the Fourier transform of x(t) = 1

- Find the Fourier transform of $x(t) = e^{j\omega_0 t}$

PROPERTY: SUMMARY

Properties	time-domain	frequency-domain
Linearity	$\sum_{n=1}^{N} \alpha_n x_n(t)$	$\sum_{n=1}^{N} \alpha_n X_n(\omega)$
Time shift	$x(t-t_0)$	$X(\omega)\exp(-j\omega t_0)$
Frequency shift	$\exp(j\omega_0 t)x(t)$	$X(\omega-\omega_0)$
Time scaling	x(lpha t)	$X(\omega/lpha)/ lpha $
Differentiation	$d^n x(t)/dt^n$	$(j\omega)^n X(\omega)$
Multiplication by t	$(-jt)^n x(t)$	$\frac{d^n X(\omega)}{d\omega^n}$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$
Convolution	$x(t)\otimes h(t)$	$X(\omega)H(\omega)$
Multiplication	x(t)m(t)	$rac{1}{2\pi}X(\omega)\otimes M(\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t) ^2 dt$	$\frac{1}{2\pi}\int_{-\infty}^{\infty} X(\omega) ^{2}d\omega$

PROPERTY: EXAMPLES

• Examples

- 1. Find the Fourier transform of $x(t) = \cos(\omega_0 t)$

- 2. Find the Fourier transform of x(t) = u(t) $u(t) = \frac{1}{2}[\operatorname{sgn}(t) + 1]$ $\operatorname{sgn}(t) \leftrightarrow \frac{2}{j\omega}$

PROPERTY: EXAMPLES

• Examples

- 3. A LTI system with impulse response h(Find the output when input is x(

$$h(t) = \exp\left[-at\right]u(t)$$
$$x(t) = u(t)$$

- 4. If $x(t) \Leftrightarrow X(\omega)$, find the Fourier transform of

$$\int_{-\infty}^t x(\tau) d\tau$$

(Hint:
$$\int_{-\infty}^{t} x(\tau) d\tau = x(t) \otimes u(t)$$
)

PROPERTY: EXAMPLES

• Example

- 5. (Modulation) If $x(t) \Leftrightarrow X(\omega)$, $m(t) = \cos(\omega_0 t)$ Find the Fourier transform of x(t)m(t)

- 6. If
$$X(\omega) = \frac{1}{a + j\omega}$$
, find $x(t)$

PROPERTY: DIFFERENTIATION IN FREQ. DOMAIN

Differentiation in frequency domain

- If:
$$x(t) \Leftrightarrow X(\omega)$$

- Then: $(-jt)^n x(t) = \frac{d^n X(\omega)}{d\omega^n}$

PROPERTY: DIFFERENTIATION IN FREQ. DOMAIN

• Example

- Find the Fourier transform of $t \exp(-at)u(t)$, a > 0

PROPERTY: FREQUENCY SHIFT

• Frequency shift

- If: $x(t) \Leftrightarrow X(\omega)$
- Then: $x(t) \exp(j\omega_0 t) \Leftrightarrow X(\omega \omega_0)$

• Example

- If $X(\omega) = rect[(\omega-1)/2]$, find the Fourier transform $x(t)\exp(-j2t)$

PROPERTY: PARSAVAL'S THEOREM

• Review: signal energy

$$E = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

• Parsaval's theorem

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 d\omega$$

PROPERTY: PARSAVAL'S THEOREM

• Example:

- Find the energy of the signal $x(t) = \exp(-2t)u(t)$

PROPERTY: PERIODIC SIGNAL

- Fourier transform of periodic signal
 - Periodic signal can be written as Fourier series

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp[jn\omega_0 t]$$

- Perform Fourier transform on both sides

$$X(\omega) = 2\pi \sum_{n=-\infty}^{+\infty} c_n \delta(\omega - n\omega_0)$$

- Introduction
- Fourier Transform
- Properties of Fourier Transform
- Applications of Fourier Transform

APPLICATIONS: FILTERING

• Filtering

- Filtering is the process by which the essential and useful part of a signal is separated from undesirable components.
 - Passing a signal through a filter (system).
 - At the output of the filter, some undesired part of the signal (e.g. noise) is removed.
- Based on the convolution property, we can design filter that only allow signal within a certain frequency range to pass through.

time domain

frequency domain

APPLICATIONS: FILTERING

Band stop (Notch) filter

Band pass filter

APPLICATION: FILTERING

• A filtering example

- A demo of a notch filter

APPLICATIONS: FILTERING

• Example

- Find out the frequency response of the RC circuit
- What kind of filters it is?

RC circuit

• Sampling theorem: time domain

- Sampling: convert the continuous-time signal to discrete-time signal.

- Sampling theorem: frequency domain
 - Fourier transform of the impulse train
 - impulse train is periodic $p(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} 1 \times e^{jn\omega_s t} \qquad \omega_s = \frac{2\pi}{T_s}$
 - Find Fourier transform on both sides

$$P(\omega) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_s)$$

• Time domain multiplication \rightarrow Frequency domain convolution

$$x(t)p(t) \Leftrightarrow \frac{1}{2\pi} [X(\omega) \otimes P(\omega)]$$

$$x(t)p(t) \Leftrightarrow \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} X(\omega - n\omega_s)$$

- Sampling theorem: frequency domain
 - Sampling in time domain \rightarrow Repetition in frequency domain

Sampling theorem

 If the sampling rate is twice of the bandwidth, then the original signal can be perfectly reconstructed from the samples.

 $\omega_{s} > 2\omega_{B}$

 $\omega_{\rm s} = 2\omega_{\rm B}$

 $\omega_{\rm s} < 2\omega_{\rm B}$

APPLICATION: AMPLITUDE MODULATION

• What is modulation?

 The process by which some characteristic of a carrier wave is varied in accordance with an information-bearing signal

- Three signals:
 - Information bearing signal (modulating signal)
 - Usually at low frequency (baseband)
 - E.g. speech signal: 20Hz 20KHz
 - Carrier wave
 - Usually a high frequency sinusoidal (passband)
 - E.g. AM radio station (1050KHz) FM radio station (100.1MHz), 2.4GHz, etc.
 - Modulated signal: passband signal

APPLICATION: AMPLITUDE MODULATION

• Amplitude Modulation (AM)

 $s(t) = A_c m(t) \cos(2\pi f_c t)$

- A direct product between message signal and carrier signal

Amplitude modulation

APPLICATION: AMPLITUDE MODULATION

• Amplitude Modulation (AM)

$$S(f) = \frac{A_{c}}{2} \left[M(f - f_{c}) + M(f + f_{c}) \right]$$

