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INTRODUCTION: MOTIVATION

• Motivation:

– Fourier series: periodic signals can be decomposed as the 

summation of orthogonal complex exponential signals

 tjnctx
n

n 0exp)( 
+

−=

=

• each harmonic contains a unique frequency: n/T

 =
T

n dttjntx
T

c
0

0exp)(
1



How about aperiodic signals             ?
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INTRODUCTION: TRANSFER FUNCTION

• System transfer function

• System with periodic inputs
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FOURIER TRANSFORM

• Inverse Fourier Transform

• Fourier Transform

– given x(t), we can find its Fourier transform 

– given          , we can find the time domain signal x(t) 

– signal is decomposed into the “weighted summation” of complex 
exponential functions. (integration is the extreme case of 
summation)
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FOURIER TRANSFORM

• Example

– Find the Fourier transform of )/()( trecttx =

t

x(t)

t

x(t)
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FOURIER TRANSFORM

• Example

– Find the Fourier transform of |)|exp()( tatx −= 0a
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FOURIER TRANSFORM

• Example

– Find the Fourier transform of )()exp()( tuattx −= 0a
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FOURIER TRANSFORM

• Example

– Find the Fourier transform of )()( attx −=
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FOURIER TRANSFORM: TABLE
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FOURIER TRANSFORM


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dttx |)(|

)()exp()( tuttx =

• Example

–

• The existence of Fourier transform

– Not all signals have Fourier transform

– If a signal have Fourier transform, it must satisfy the following two 

conditions

• 1. x(t) is absolutely integrable

• 2. x(t) is well behaved

– The signal has finite number of discontinuities, minima, 

and maxima within any finite interval of time.
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PROPERTIES: LINEARITY

• Linearity

– If 

– then

)()( 11 Xtx  )()( 22 Xtx 
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• Example

– Find the Fourier transform of )(4)()2exp(3)/(2)( ttuttrecttx  +−+=
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PROPERTY: TIME-SHIFT

• Time shift

– If 

– Then

)()( Xtx 

]exp[)()( 00 tjXttx  −−

• Time shift

– If 

– Then

• Review: complex number
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cos|| ca = sin|| cb =
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phase shift

time shift in time domain ➔ frequency shift in frequency domain

– Phase shift of a complex number c by       :  0  )(exp||)exp( 00  += jcjc
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PROPERTY: TIME SHIFT

• Example:

– Find the Fourier transform of  2)( −= trecttx
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PROPERTY: TIME SCALING

• Time scaling

– If 

– Then 

• Example

– Let                                         , find the Fourier transform of 
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PROPERTY: SYMMETRY

• Symmetry

– If                            , and           is a real-valued time signal  

– Then
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PROPERTY: DIFFERENTIATION

• Differentiation

– If  

– Then
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• Example

– Let                                          , find the Fourier transform of   ( ) 2/1)( −=  rectX
dt

tdx )(
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PROPERTY: DIFFERENTIATION

• Example

– Find the Fourier transform of 

(Hint:                                         )
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PROPERTY: CONVOLUTION

• Convolution

– If                            ,

– Then  
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PROPERTY: CONVOLUTION

• Example

– An LTI system has impulse response

If the input is

Find the output 

( ) )(exp)( tuatth −=
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PROPERTY: MULTIPLICATION

• Multiplication

– If                             , 

– Then
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PROPERTY: DUALITY

• Duality

– If 

– Then
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PROPERTY: DUALITY

• Example

– Find the Fourier transform of

(recall:                                             )  
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PROPERTY: DUALITY

• Example

– Find the Fourier transform of 1)( =tx

tj
etx 0)(


=– Find the Fourier transform of
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PROPERTY: SUMMARY
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PROPERTY: EXAMPLES

• Examples

– 1. Find the Fourier transform of )cos()( 0ttx =

– 2. Find the Fourier transform of )()( tutx =

 1)sgn(
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1
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PROPERTY: EXAMPLES

• Examples

– 3. A LTI system with impulse response 

Find the output when input is 

  )(exp)( tuatth −=

)()( tutx =

– 4. If                            , find the Fourier transform of 

(Hint:                                            )  
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PROPERTY: EXAMPLES

• Example

– 5. (Modulation) If                           ,

Find the Fourier transform of  

)()( Xtx  )cos()( 0ttm =

)()( tmtx

– 6. If                                , find x(t)
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PROPERTY: DIFFERENTIATION IN FREQ. DOMAIN

• Differentiation in frequency domain

– If:

– Then:
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PROPERTY: DIFFERENTIATION IN FREQ. DOMAIN

32

),()exp( tuatt − 0a

• Example

– Find the Fourier transform of 
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PROPERTY: FREQUENCY SHIFT

• Frequency shift

– If:

– Then:

)()( Xtx 

)()exp()( 00  − Xtjtx

• Example

– If                                           , find the Fourier transform ( ) 2/1)( −=  rectX )2exp()( tjtx −
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PROPERTY: PARSAVAL’S THEOREM

• Review: signal energy
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PROPERTY: PARSAVAL’S THEOREM

• Example:

– Find the energy of the signal )()2exp()( tuttx −=
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PROPERTY: PERIODIC SIGNAL

• Fourier transform of periodic signal

– Periodic signal can be written as Fourier series
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– Perform Fourier transform on both sides

)(2)( 0 ncX
n

n −= 
+

−=



37

OUTLINE

• Introduction

• Fourier Transform

• Properties of Fourier Transform

• Applications of Fourier Transform



38

APPLICATIONS: FILTERING

• Filtering

– Filtering is the process by which the essential and useful part of a 

signal is separated from undesirable components.

• Passing a signal through a filter (system).

• At the output of the filter, some undesired part of the signal 

(e.g. noise) is removed.

– Based on the convolution property, we can design filter that only 

allow signal within a certain frequency range to pass through.
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filter filter
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APPLICATIONS: FILTERING

• Classifications of filters

Low pass filter

Band pass filter
Band stop (Notch) filter

Passband
Stop

band PassbandStop

band

High pass filter

Passband Stop

band

Stop

band

Stop

band
Passband Passband
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APPLICATION: FILTERING

• A filtering example

– A demo of a notch filter

)(X

)(H
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Corrupted sound Filter Filtered sound
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APPLICATIONS: FILTERING

• Example 

– Find out the frequency response of the RC circuit

– What kind of filters it is?

RC circuit
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APPLICATION: SAMPLING THEOREM

• Sampling theorem: time domain

– Sampling: convert the continuous-time signal to discrete-time signal.
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APPLICATION: SAMPLING THEOREM

• Sampling theorem: frequency domain

– Fourier transform of the impulse train

• impulse train is periodic
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• Time domain multiplication ➔ Frequency domain convolution
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APPLICATION: SAMPLING THEOREM

• Sampling theorem: frequency domain

– Sampling in time domain ➔ Repetition in frequency domain

Time domain Frequency domain
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APPLICATION: SAMPLING THEOREM

• Sampling theorem

– If the sampling rate is twice of the bandwidth, then the original 

signal can be perfectly reconstructed from the samples. 

Bs  2
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Frequency domain
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APPLICATION: AMPLITUDE MODULATION

• What is modulation?

– The process by which some characteristic of a carrier wave is 

varied in accordance with an information-bearing signal

modulation
Information 

bearing signal

Carrier wave

Modulated signal

• Three signals:

– Information bearing signal (modulating signal)

• Usually at low frequency (baseband)

• E.g. speech signal: 20Hz – 20KHz

– Carrier wave

• Usually a high frequency sinusoidal (passband)

• E.g. AM radio station (1050KHz) FM radio station 

(100.1MHz), 2.4GHz, etc.

– Modulated signal: passband signal
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APPLICATION: AMPLITUDE MODULATION

• Amplitude Modulation (AM)

)2cos()()( tftmAts cc =

– A direct product between message signal and carrier signal

Mixer

Local

Oscillator
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Amplitude modulation
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APPLICATION: AMPLITUDE MODULATION

• Amplitude Modulation (AM)

 )()(
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Amplitude modulation


