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INTRODUCTION: MOTIVATION

• Motivation of Fourier series

– Convolution is derived by decomposing the signal into the sum of 

a series of delta functions

• Each delta function has its unique delay in time domain.

• Time domain decomposition
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INTRODUCTION: MOTIVATION

• Can we decompose the signal into the sum of other 

functions

– Such that the calculation can be simplified?

– Yes. We can decompose periodic signal as the sum of a sequence 

of complex exponential signals ➔ Fourier series.

– Why complex exponential signal? (what makes complex 

exponential signal so special?)

• 1. Each complex exponential signal has a unique frequency ➔

frequency decomposition

• 2. Complex exponential signals are periodic
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INTRODUCTION: REVIEW

• Complex exponential signal

)2sin()2cos(2 ftjfte ftj  +=

– Complex exponential function has a one-to-one relationship with 

sinusoidal functions.

– Each sinusoidal function has a unique frequency: f

• What is frequency?

– Frequency is a measure of how fast the signal can change within a 

unit time.

• Higher frequency ➔ signal changes faster

f = 0 Hz

f = 1 Hz

f = 3 Hz

Sinusoidal at different frequencies
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INTRODUCTION: ORTHONORMAL SIGNAL SET

• Definition: orthogonal signal set

– A set of signals,                                      , are said to be orthogonal 

over an interval (a, b) if   

 ),(),(),( 210 ttt 

kl

klC
dttt

b

a
kl



=





= ,0

,
)()( *

• Example: 

– the signal set:                                                                       are 

orthogonal over the interval               , where  
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FOURIER SERIES

• Definition:

– For any periodic signal with fundamental period     , it can be 
decomposed as the sum of a set of complex exponential signals as
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For a periodic signal, it can be either represented as s(t), or 
represented as 
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FOURIER SERIES

• Fourier series
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– The periodic signal is decomposed into the weighted summation of 
a set of orthogonal complex exponential functions.

– The frequency of the n-th complex exponential function:
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• The periods of the n-th complex exponential function:

– The values of coefficients,                                  ,  depend on x(t)

• Different x(t) will result in different 

• There is a one-to-one relationship between x(t) and       
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FOURIER SERIES

• Example
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FOURIER SERIES

• Amplitude and phase

– The Fourier series coefficients are usually complex numbers

– Amplitude line spectrum: amplitude as a function of 

– Phase line spectrum: phase as a function of 
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FOURIER SERIES: FREQUENCY DOMAIN

• Signal represented in frequency domain: line spectrum

– Each       has its own frequency

– The signal is decomposed in frequency domain.

– is called the harmonic of signal s(t) at frequency

– Each signal has many frequency components.

• The power of the harmonics at different frequencies determines 

how fast the signal can change.

nc

nc

amplitude phase

0n

0n



FOURIER SERIES: FREQUENCY DOMAIN

• Example: Piano Note
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E5: 659.25 Hz

E6: 1318.51 Hz

B6: 1975.53 Hz

E7: 2637.02 Hz

E5

E6
B6

E7

All graphs in this page are created by using the open-source software Audacity.

piano notes

One piano note

spectrum
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FOURIER SERIES

• Example

– Find the Fourier series of )exp()( 0tjts =



FOURIER SERIES

• Example

– Find the Fourier series of  
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Time domain Amplitude spectrum Phase spectrum
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FOURIER SERIES

• Example

– Find the Fourier series of  
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FOURIER SERIES: DIRICHLET CONDITIONS

• Can any periodic signal be decomposed into Fourier 

series?

– Only signals satisfy Dirichlet conditions have Fourier series

• Dirichlet conditions

– 1. x(t) is absolutely integrable within one period

 T
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– 2. x(t) has only a finite number of maxima and minima.

– 3. The number of discontinuities in x(t) must be finite.
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PROPERTIES: LINEARITY

• Linearity

– Two periodic signals with the same period
0
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PROPERTIES: EFFECTS OF SYMMETRY

• Symmetric signals

– A signal is even symmetry if:

– A signal is odd symmetry if:

– The existence of symmetries simplifies the computation of Fourier 

series coefficients. 
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PROPERTIES: EFFECTS OF SYMMETRY

• Fourier series of even symmetry signals

– If a signal is even symmetry, then
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– If a signal is odd symmetry, then
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PROPERTIES: EFFECTS OF SYMMETRY

• Example
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PROPERTIES: SHIFT IN TIME

• Shift in time

– If            has Fourier series      , then                   has Fourier series  )(tx nc )( 0ttx −
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PROPERTIES: PARSEVAL’S THEOREM

• Review: power of periodic signal
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PROPERTIES: PARSEVAL’S THEOREM

• Example

– Use Parseval’s theorem find the power of )sin()( 0tAtx =
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PERIODIC INPUTS: COMPLEX EXPONENTIAL INPUT

• LTI system with complex exponential input
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• Transfer function            

– For LTI system with complex exponential input, the output is 

)exp()()( tjHty =

– It tells us the system response at different frequencies



PERIODIC INPUT

• Example:

– For a system with impulse response

find the transfer function  
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PERIODIC INPUT: 

• Example

– Find the transfer function of the system shown in figure. 

RL circuit



PERIODIC INPUTS

• Example

– Find the transfer function of the system shown in figure
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RC circuit
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PERIODIC INPUTS: TRANSFER FUNCTION

• Transfer function

– For system described by differential equations 
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PERIODIC INPUTS

• LTI system with periodic inputs

– Periodic inputs: 
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PERIODIC INPUTS

• Procedures:

– To find the output of LTI system with periodic input

• 1. Find the Fourier series coefficients of periodic input x(t).
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PERIODIC INPUTS

• Example

– Find the response of the system when the input is 

)2cos(2)cos(4)( tttx −=

RL Circuit
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PERIODIC INPUTS

• Example 

– Find the response of the system when the input is shown in figure.
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PERIODIC INPUTS: GIBBS PHENOMENON

• The Gibbs Phenomenon

– Most Fourier series has infinite number of elements→ unlimited 

bandwidth

• What if we truncate the infinite series to finite number of 

elements?

– The truncated signal,             , is an approximation of the 

original  signal x(t)
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PERIODIC INPUTS: GIBBS PHENOMENON
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FOURIER SERIES

• Analogy: Optical Prism

– Each color is an Electromagnetic wave with a different frequency
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Optical prism


