Department of Electrical Engineering University of Arkansas

Dr. Jingxian Wu wuj@uark.edu

ARKANSAS

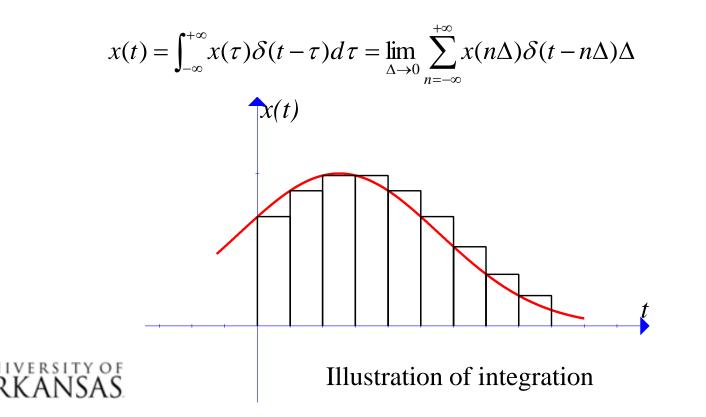
OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

INTRODUCTION: MOTIVATION

Motivation of Fourier series

- Convolution is derived by decomposing the signal into the sum of a series of delta functions
 - Each delta function has its unique delay in time domain.
 - Time domain decomposition



INTRODUCTION: MOTIVATION

- Can we decompose the signal into the sum of other functions
 - Such that the calculation can be simplified?
 - Yes. We can decompose periodic signal as the sum of a sequence of complex exponential signals → Fourier series.

$$e^{j\Omega_0 t} = e^{j2\pi f_0 t} \qquad f_0 = \frac{\Omega_0}{2\pi}$$

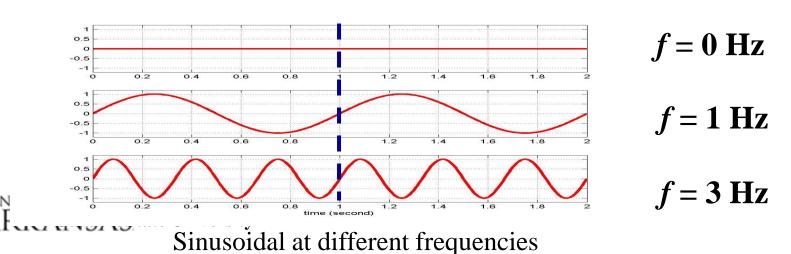
- Why complex exponential signal? (what makes complex exponential signal so special?)
 - 1. Each complex exponential signal has a unique frequency → frequency decomposition
 - 2. Complex exponential signals are periodic

INTRODUCTION: REVIEW

Complex exponential signal

 $e^{j2\pi ft} = \cos(2\pi ft) + j\sin(2\pi ft)$

- Complex exponential function has a one-to-one relationship with sinusoidal functions.
- Each sinusoidal function has a unique frequency: f
- What is frequency?
 - Frequency is a measure of how fast the signal can change within a unit time.



• Higher frequency \rightarrow signal changes faster

INTRODUCTION: ORTHONORMAL SIGNAL SET

• Definition: orthogonal signal set

– A set of signals, $\{\phi_0(t), \phi_1(t), \phi_2(t), \cdots\}$, are said to be orthogonal over an interval (a, b) if

$$\int_{a}^{b} \phi_{l}(t)\phi_{k}^{*}(t)dt = \begin{cases} C, & l=k\\ 0, & l\neq k \end{cases}$$

• Example:

- the signal set: $\phi_k(t) = e^{jk\Omega_0 t}$ $k = 0, \pm 1, \pm 2, \cdots$ are orthogonal over the interval $[0, T_0]$, where $\Omega_0 = \frac{2\pi}{T_0}$

OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

• Definition:

- For any periodic signal with fundamental period T_0 , it can be decomposed as the sum of a set of complex exponential signals as

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t} \qquad \qquad \Omega_0 = \frac{2\pi}{T_0}$$

• $c_n, n = 0, \pm 1, \pm 2, \cdots$, Fourier series coefficients

$$c_n = \frac{1}{T_0} \int_{} x(t) e^{-jn\Omega_0 t} dt$$

• derivation of c_n :

• Fourier series

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t}$$

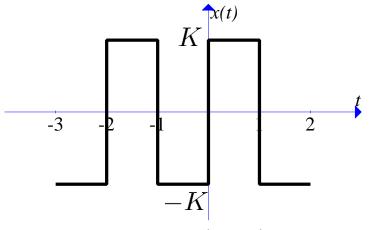
- The periodic signal is decomposed into the weighted summation of a set of orthogonal complex exponential functions.
- The frequency of the n-th complex exponential function: $n\Omega_0$
 - The periods of the n-th complex exponential function: $T_n = \frac{T_0}{n}$
- The values of coefficients, $c_n, n = 0, \pm 1, \pm 2, \cdots$, depend on x(t)
 - Different x(t) will result in different c_n
 - There is a one-to-one relationship between x(t) and c_n

 $s(t) \quad \clubsuit \quad [\cdots, c_{-2}, c_{-1}, c_0, c_1, c_2, \cdots]$

For a periodic signal, it can be either represented as s(t), or represented as c_n

• Example

$$x(t) = \begin{cases} -K, & -1 < t < 0 \\ K, & 0 < t < 1 \end{cases}$$



Rectangle pulses

• Amplitude and phase

- The Fourier series coefficients are usually complex numbers

$$c_n = a_n + jb_n = |c_n|e^{j\theta_n}$$

– Amplitude line spectrum: amplitude as a function of $n\Omega_0$

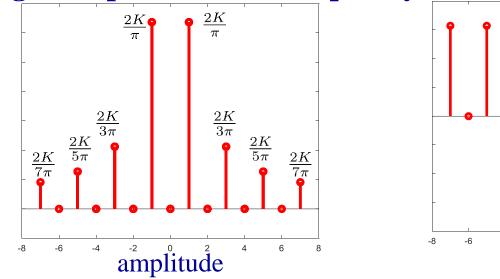
$$\left|c_{n}\right| = \sqrt{a_{n}^{2} + b_{n}^{2}}$$

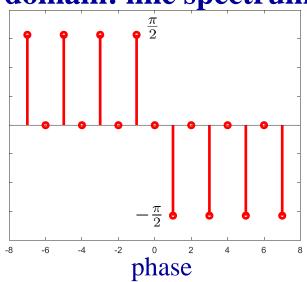
– Phase line spectrum: phase as a function of $n\Omega_0$

$$\theta_n = a \tan \frac{b_n}{a_n}$$

FOURIER SERIES: FREQUENCY DOMAIN

Signal represented in frequency domain: line spectrum

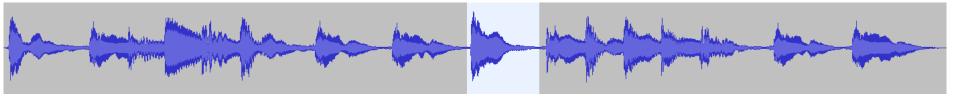




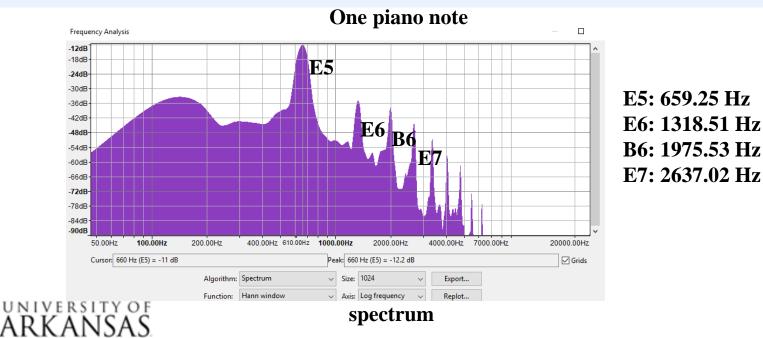
- Each c_n has its own frequency $n\Omega_0$
- The signal is decomposed in frequency domain.
- c_n is called the harmonic of signal s(t) at frequency $n\Omega_0$
- Each signal has many frequency components.
 - The power of the harmonics at different frequencies determines how fast the signal can change.

FOURIER SERIES: FREQUENCY DOMAIN

• Example: Piano Note



piano notes



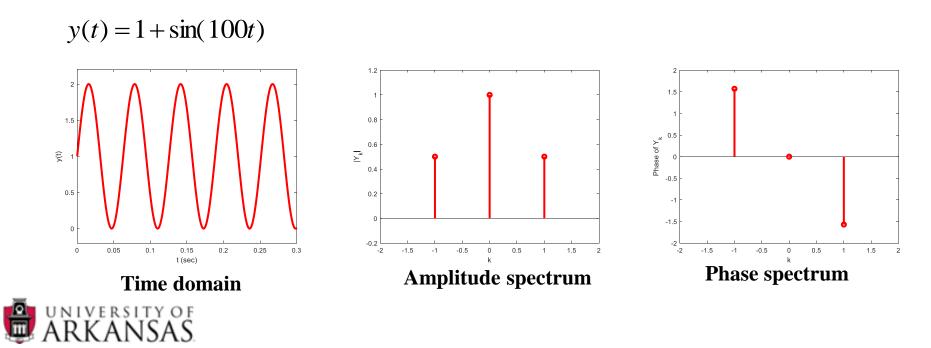
All graphs in this page are created by using the open-source software Audacity.

• Example

- Find the Fourier series of $s(t) = \exp(j\Omega_0 t)$

• Example

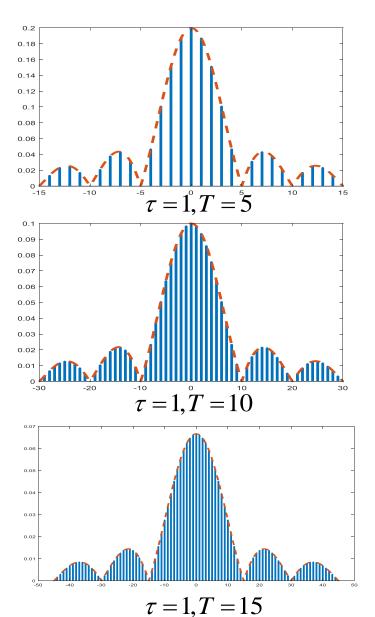
- Find the Fourier series of $s(t) = B + A\cos(\Omega_0 t + \theta)$

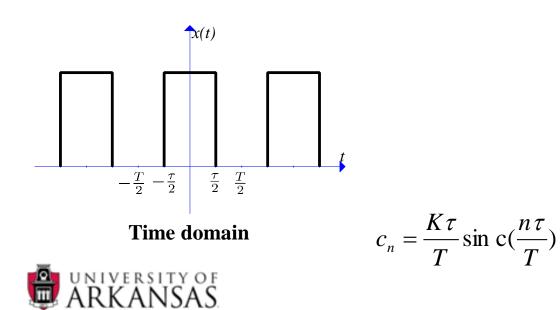


• Example

- Find the Fourier series of

$$s(t) = \begin{cases} 0, & -T/2 < t < -\tau/2 \\ K, & -\tau/2 < t < \tau/2 \\ 0, & \tau/2 < t < T/2 \end{cases}$$





FOURIER SERIES: DIRICHLET CONDITIONS

- Can any periodic signal be decomposed into Fourier series?
 - Only signals satisfy Dirichlet conditions have Fourier series
- Dirichlet conditions
 - -1.x(t) is absolutely integrable within one period

 $\int_{<T>} |x(t)| \, dt < \infty$

- -2. x(t) has only a finite number of maxima and minima.
- 3. The number of discontinuities in x(t) must be finite.

OUTLINE

- Introduction
- Fourier series
- Properties of Fourier series
- Systems with periodic inputs

PROPERTIES: LINEARITY

• Linearity

- Two periodic signals with the same period $T_0 = \frac{2\pi}{\Omega_0}$

$$x(t) = \sum_{n=-\infty}^{+\infty} \alpha_n e^{jn\Omega_0 t} \qquad \qquad y(t) = \sum_{n=-\infty}^{+\infty} \beta_n e^{jn\Omega_0 t}$$

- The Fourier series of the superposition of two signals is

$$k_1 x(t) + k_2 y(t) = \sum_{n = -\infty}^{+\infty} (k_1 \alpha_n + k_2 \beta_n) e^{j n \Omega_0 t}$$

- If

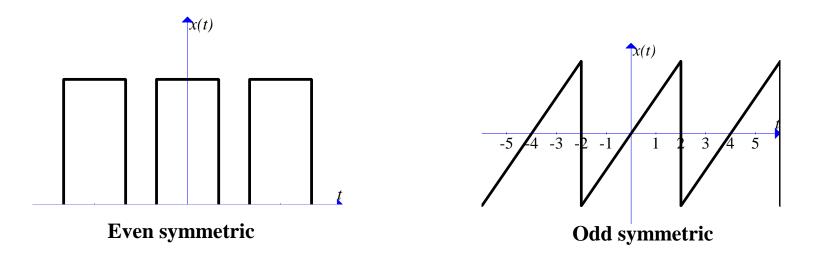
$$x(t) \ll \alpha_n \qquad y(t) \ll \beta_n$$
• then

$$k_1 x(t) + k_2 y(t) \ll (k_1 \alpha_n + k_2 \beta_n)$$

PROPERTIES: EFFECTS OF SYMMETRY

• Symmetric signals

- A signal is even symmetry if: x(t) = x(-t)
- A signal is odd symmetry if: x(t) = -x(-t)
- The existence of symmetries simplifies the computation of Fourier series coefficients.



PROPERTIES: EFFECTS OF SYMMETRY

• Fourier series of even symmetry signals

- If a signal is even symmetry, then

$$x(t) = \sum_{n=-\infty}^{+\infty} a_n \cos(n\Omega_0 t) \qquad \qquad a_n = \frac{2}{T_0} \int_0^{T_0/2} x(t) \cos(n\Omega_0 t) dt$$

• Fourier series of odd symmetry signals

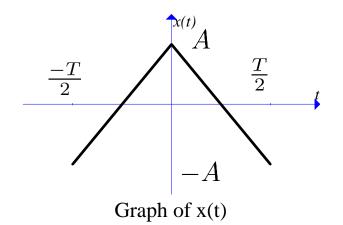
- If a signal is odd symmetry, then

$$x(t) = \sum_{n=1}^{+\infty} b_n \sin\left(n\Omega_0 t\right) \qquad \qquad b_n = \frac{2}{T_0} \int_0^{T_0/2} x(t) \sin\left(n\Omega_0 t\right) dt$$

PROPERTIES: EFFECTS OF SYMMETRY

• Example

$$x(t) = \begin{cases} A - \frac{4A}{T}t, & 0 < t < T/2 \\ \frac{4A}{T}t - 3A, & T/2 < t < T \end{cases}$$



PROPERTIES: SHIFT IN TIME

• Shift in time

- If x(t) has Fourier series c_n , then $x(t-t_0)$ has Fourier series

$$c_n e^{-jn\Omega_0 t_0}$$

if
$$x(t) \longleftrightarrow c_n$$
, then $x(t-t_0) \bigstar c_n e^{-jn\Omega_0 t_0}$

- Proof:

PROPERTIES: PARSEVAL'S THEOREM

• Review: power of periodic signal

$$P = \frac{1}{T} \int_0^T |x(t)|^2 dt$$

• Parseval's theorem

if
$$x(t) \longleftrightarrow \alpha_n$$

then $\frac{1}{T} \int_0^T |x(t)|^2 dt = \sum_{m=-\infty}^{+\infty} |\alpha_m|^2$

– Proof:

The power of signal can be computed in frequency domain!

PROPERTIES: PARSEVAL'S THEOREM

• Example

- Use Parseval's theorem find the power of $x(t) = A \sin(\Omega_0 t)$

OUTLINE

- Introduction
- Fourier series
- **Properties of Fourier series**
- Systems with periodic inputs

PERIODIC INPUTS: COMPLEX EXPONENTIAL INPUT

• LTI system with complex exponential input

$$y(t) = x(t) \otimes h(t) = h(t) \otimes x(t)$$
$$= \int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d\tau$$
$$= \exp(j\Omega t) \int_{-\infty}^{+\infty} h(\tau) \exp(-j\Omega \tau) d\tau$$

• Transfer function

$$H(\Omega) = \int_{-\infty}^{+\infty} h(\tau) \exp(-j\Omega\tau) d\tau$$

- For LTI system with complex exponential input, the output is

 $y(t) = H(\Omega) \exp(j\Omega t)$

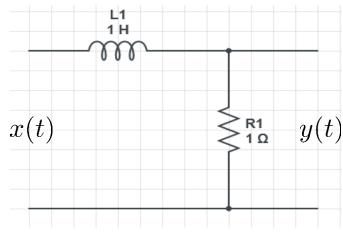
– It tells us the system response at different frequencies

• Example:

- For a system with impulse response $h(t) = \delta(t - t_0)$ find the transfer function

• Example

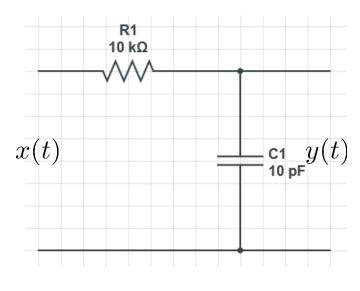
- Find the transfer function of the system shown in figure.



RL circuit

• Example

- Find the transfer function of the system shown in figure



RC circuit

PERIODIC INPUTS: TRANSFER FUNCTION

• Transfer function

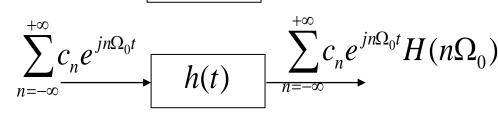
- For system described by differential equations

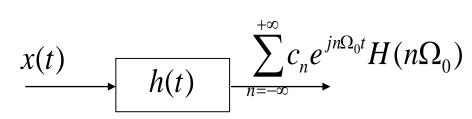
$$\sum_{i=0}^{n} p_{i} y^{(i)}(t) = \sum_{i=0}^{m} q_{i} x^{(i)}(t)$$

$$H(\Omega) = \frac{\sum_{i=0}^{m} q_i (j\Omega)^i}{\sum_{i=0}^{n} p_i (j\Omega)^i}$$

- LTI system with periodic inputs •
 - Periodic inputs: $x(t) = \sum_{n=1}^{\infty} c_n \exp(jn\Omega_0 t)$ $n = -\infty$

$$\xrightarrow{e^{jn\Omega_0 t}} h(t) \xrightarrow{e^{jn\Omega_0 t}} H(n\Omega_0)$$





For system with periodic inputs, the output is the weighted sum of the transfer function.

 $\omega_0 = \frac{2\pi}{T}$

• Procedures:

- To find the output of LTI system with periodic input
 - 1. Find the Fourier series coefficients of periodic input *x*(*t*).

$$\alpha_n = \frac{1}{T} \int_0^T x(t) e^{-jn\Omega_0 t} dt \qquad \qquad \Omega_0 = 2\pi f_0 = \frac{2\pi}{T_{\bullet}}$$

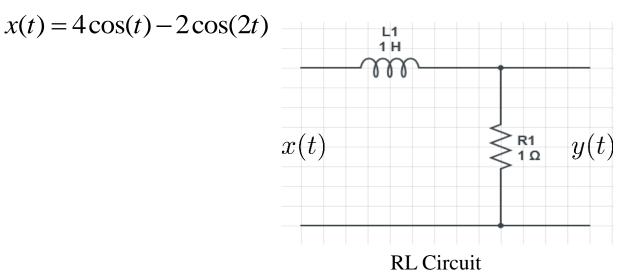
- 2. Find the transfer function of LTI system $H(\Omega)$
- 3. The output of the system is

$$y(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t} H(n\Omega_0)$$

period of x(t)

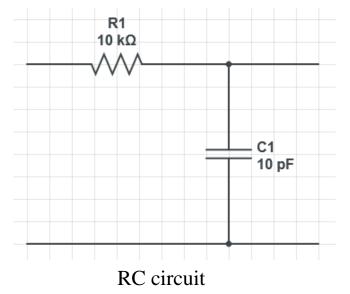
• Example

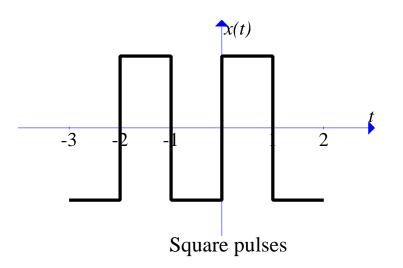
- Find the response of the system when the input is



• Example

- Find the response of the system when the input is shown in figure.





PERIODIC INPUTS: GIBBS PHENOMENON

• The Gibbs Phenomenon

Most Fourier series has infinite number of elements→ unlimited bandwidth

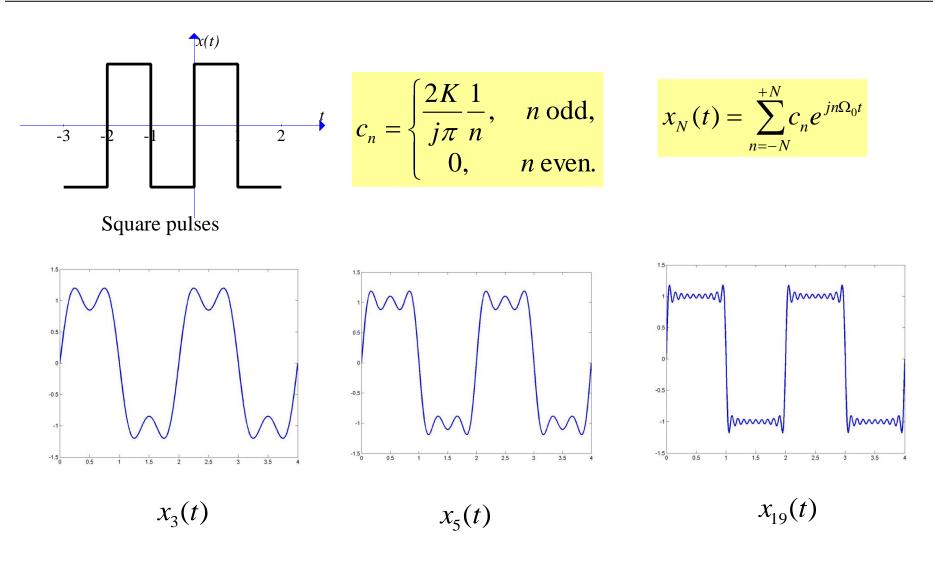
$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\Omega_0 t}$$

• What if we truncate the infinite series to finite number of elements?

$$x_N(t) = \sum_{n=-N}^{+N} c_n e^{jn\Omega_0 t}$$

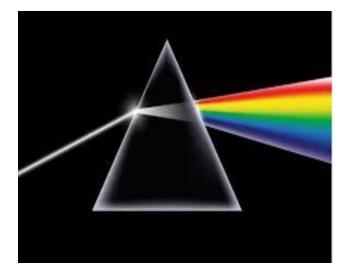
– The truncated signal, $x_N(t)$, is an approximation of the original signal x(t)

PERIODIC INPUTS: GIBBS PHENOMENON



Analogy: Optical Prism

- Each color is an Electromagnetic wave with a different frequency



Optical prism

