Department of Electrical Engineering University of Arkansas

ELEG 3124 SYSTEMS AND SIGNALS Ch. 2 Continuous-Time Systems

Dr. Jingxian Wu wuj@uark.edu

OUTLINE

- Classifications of continuous-time system
- Linear time-invariant system (LTI)
- Properties of LTI system
- System described by differential equations

CLASSIFICATIONS: SYSTEM DEFINITION

What is system?

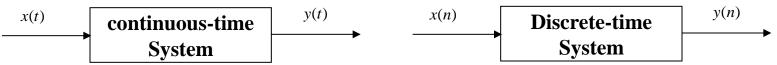
- A system is a process that transforms input signals into output signals
 - Accept an input
 - Process the input
 - Send an output (also called: the response of the system to input)
- System examples:
 - Radio: input: electrical signals from air, output: music
 - Robot: input: electrical control signals, output: motion or action

Continuous-time system

 A system in which continuous-time input signals are transformed to continuous-time output signals

• Discrete-time system

 A system in which discrete-time input signals are transformed to discrete-time output signals.



CLASSIFICATIONS: SYSTEM DEFINITION

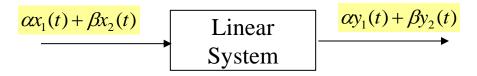
Classifications

- Linear v.s. non-linear
- Time-invariant v.s. time-varying
- Dynamic v.s. static (memory v.s. memoryless)
- Causal v.s. non-causal
- Invertible v.s. non-invertible
- Stable v.s. non-stable

CLASSIFICATIONS: LINEAR AND NON-LINEAR

Linear system

- Let $y_1(t)$ be the response of a system to an input $x_1(t)$
- Let $y_2(t)$ be the response of a system to an input $x_2(t)$
- The system is linear if the superposition principle is satisfied:
 - 1. the response to $x_1(t) + x_2(t)$ is $y_1(t) + y_2(t)$
 - 2. the response to $\alpha x_1(t)$ is $\alpha y_1(t)$



Non-linear system

 If the superposition principle is not satisfied, then the system is a non-linear system

CLASSIFICATIONS: LINEAR AND NON-LINEAR

Example: check if the following systems are linear

- System 1:
$$y(t) = \exp[x(t)]$$

- System 2: charge a capacitor. Input: i(t), output v(t)

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

- System 3: inductor. Input: i(t), output v(t)

$$v(t) = L\frac{di(t)}{dt}$$

CLASSIFICATIONS: LINEAR AND NON-LINEAR

Example

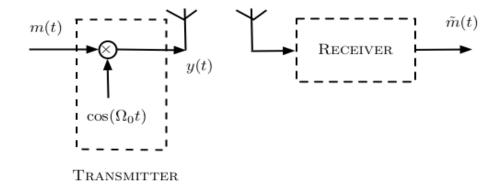
- System 4:
$$y(t) = \frac{1}{T} \int_{t-T}^{t} x(\tau)d\tau + B$$

- System 5:
$$y(t) = |x(t)|$$

- System 6:
$$y(t) = x^2(t)$$

CLASSIFICATIONS: LINEAR V.S. NON-LINEAR

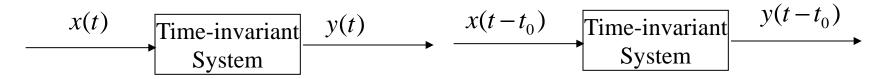
- Example:
 - Amplitude Modulation:
 - Is it linear?



CLASSIFICATIONS: TIME-VARYING V.S. TIME-INVARIANT

Time-invariant

 A system is time-invariant if a time shift in the input signal causes an identical time shift in the output signal



Examples

$$- y(t) = \cos(x(t))$$

$$y(t) = \int_0^t x(v) dv$$

CLASSIFICATIONS: MEMORY V.S. MEMORYLESS

Memoryless system

- If the present value of the output depends only on the present value of input, then the system is said to be memoryless (or instantaneous).
- Example: input x(t): the current passing through a resistor
 output y(t): the voltage across the resistor

$$y(t) = Rx(t)$$



System with memory

- If the present value of the output depends on not only present value of input, but also previous input values, then the system has memory.
- Example: capacitor, current: x(t), output voltage: y(t)

$$y(t) = \frac{1}{C} \int_0^t x(\tau) d\tau$$

the output value at t depends on all input values before t

CLASSIFICATIONS: MEMORY V.S. MEMORYLESS

• Examples: determine if the systems has memory or not

$$- \qquad y(t) = \sum_{i=0}^{N} a_i x(t - T_i)$$

$$- y(t) = \sin(2x^2(t) + \theta)x(t)$$

CLASSIFICATIONS: CAUSAL V.S. NON-CAUSAL

Causal system

- A system is causal if the output $y(t_0)$ depends only on values of input for $t \le t_0$
 - The output depends on only input from the past and present
- Example

$$y(t) = \frac{1}{C} \int_0^t x(\tau) d\tau$$

Non-causal system

- A system is non-causal if the output depends on the input from the future (prediction).
- Examples:

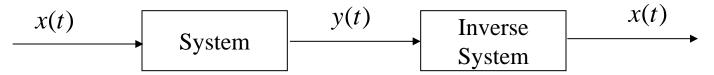
$$y(t) = x(t+a)$$
 $a > 0$ $y(t) = \frac{1}{T} \int_{-T/2}^{T/2} x(\tau) d\tau$

- The output value at t depends on the input value at t + a (from future)
- All practical systems are causal.

CLASSIFICATION: INVERTIBILITY

Invertible

- A system is invertible if
 - by observing the output, we can determine its input.



— Question: for a system, if two different inputs result in the same output, is this system invertible?

Example

$$y(t) = 2x(t)$$

$$y(t) = \cos[x(t)]$$

 If two different inputs result in the same output, the system is noninvertible

CLASSIFICATION: STABILITY

Bounded signal

- Definition: a signal x(t) is said to be bounded if

$$|x(t)| < B < \infty$$
 $\forall t$

Bounded-input bounded-output (BIBO) stable system

- Definition: a system is BIBO stable if, for any bounded input x(t), the response y(t) is also bounded.

$$|x(t)| < B_1 < \infty \Longrightarrow |y(t)| < B_2 < \infty$$

• Example: determine if the systems are BIBO stable

$$y(t) = \exp[x(t)]$$

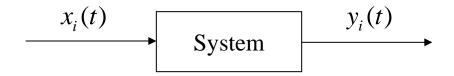
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

OUTLINE

- Classifications of continuous-time system
- Linear time-invariant system (LTI)
- Properties of LTI system
- System described by differential equations

LTI: DEFINTION

- Linear time-invariant (LTI) system
 - Definition: a system is said to be LTI if it's linear and time-invariant



Linear

Input:
$$x(t) = a_1 x_1(t) + a_2 x_2(t) + \dots + a_N x_N(t) = \sum_{i=1}^{N} a_i x_i(t)$$

Input:
$$x(t) = a_1 x_1(t) + a_2 x_2(t) + \dots + a_N x_N(t) = \sum_{i=1}^{N} a_i x_i(t)$$

Output: $y(t) = a_1 y_1(t) + a_2 y_2(t) + \dots + a_N y_N(t) = \sum_{i=1}^{N} a_i y_i(t)$

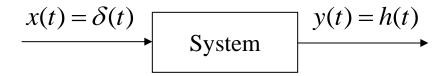
Time-invariant

Input:
$$x(t) = x_i(t - t_0)$$

Output:
$$y(t) = y_i(t - t_0)$$

LTI: IMPULSE RESPONSE

- Impulse response of LTI system
 - Def: the output (response) of a system when the input is a unit impulse function (delta function).
 - Usually denoted as h(t)



- For system with an arbitrary input x(t), we want to find out the output y(t).
 - Method 1: differential equations
 - Methods 2: convolution integral
 - Methods 3: Laplace transform, Fourier transform,

Derivation

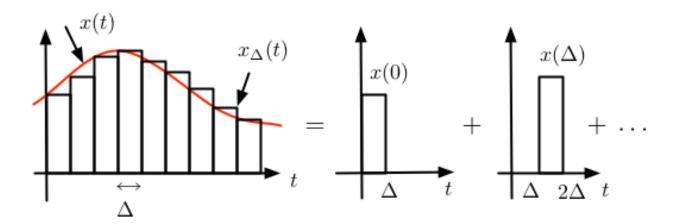
Any signal can be approximated by the sum of a sequence of delta

functions

$$\int_{-\infty}^{+\infty} z(\tau) d\tau = \lim_{\Delta \to 0} \sum_{n=-\infty}^{+\infty} z(n\Delta) \Delta$$

Ons
$$\int_{-\infty}^{+\infty} z(\tau) d\tau = \lim_{\Delta \to 0} \sum_{n = -\infty}^{+\infty} z(n\Delta) \Delta$$

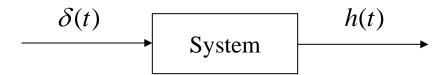
$$x(t) = \int_{-\infty}^{+\infty} x(\tau) \delta(t - \tau) d\tau = \lim_{\Delta \to 0} \sum_{n = -\infty}^{+\infty} x(n\Delta) \delta(t - n\Delta) \Delta$$



Derivation

Any signal can be approximated by the sum of a sequence of delta functions

$$x(t) = \int_{-\infty}^{+\infty} x(\tau) \delta(t - \tau) d\tau = \lim_{\Delta \to 0} \sum_{n = -\infty}^{+\infty} x(n\Delta) \delta(t - n\Delta) \Delta$$



Time invariant

- Linear
$$\sum_{n=-\infty}^{+\infty} x(n\Delta) \delta(t-n\Delta) \Delta$$
 System
$$\sum_{n=-\infty}^{+\infty} x(n\Delta) h(t-n\Delta) \Delta$$

Convolution

- Definition: the convolution of two signals x(t) and h(t) is defined as

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

- The operation of convolution is usually denoted with the symbol \otimes

$$y(t) = x(t) \otimes h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

$$\begin{array}{c|c} x(t) \\ \hline \\ h(t) \\ \hline \end{array}$$

For LTI system, if we know input x(t) and impulse response h(t), Then the output is $x(t) \otimes h(t)$

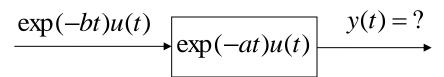
• Examples

$$x(t) \otimes \delta(t)$$

$$x(t) \otimes \delta(t-t_0)$$

$$x(t) \otimes u(t)$$

Examples



Example

- Obtain the impulse response of a capacitor and use it to find the unit-step response by using convolution. Assume the input is the current, and the output is the voltage. Let C = 1F.

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$

Commutativity

$$x(t) \otimes y(t) = y(t) \otimes x(t)$$

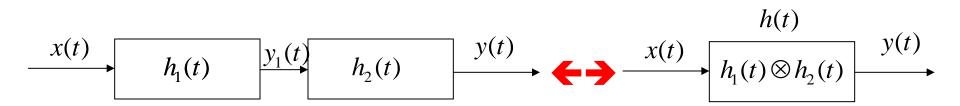
- Proof:

$$x(t) \otimes y(t) = \int_{-\infty}^{+\infty} x(\tau) y(t - \tau) d\tau$$

Associativity

$$x(t) \otimes h_1(t) \otimes h_2(t) = [x(t) \otimes h_1(t)] \otimes h_2(t) = x(t) \otimes [h_1(t) \otimes h_2(t)]$$

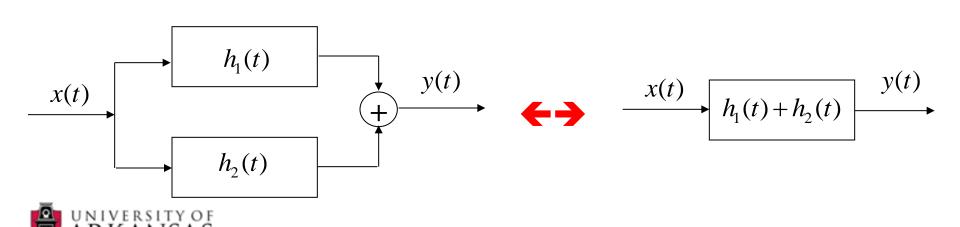
- proof



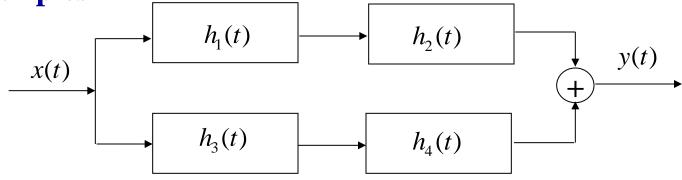
Distributivity

$$x(t) \otimes [h_1(t) + h_2(t)] = [x(t) \otimes h_1(t)] + [x(t) \otimes h_1(t)]$$

- proof



Examples



$$h_1(t) = \exp(-2t)u(t)$$

$$h_3(t) = \exp(-3t)u(t)$$

$$h(t) = ?$$

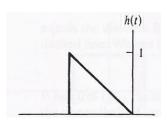
$$h_2(t) = 2\exp(-t)u(t)$$

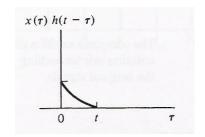
$$h_4(t) = 4\delta(t)$$

LTI: GRAPHICAL CONVOLUTION

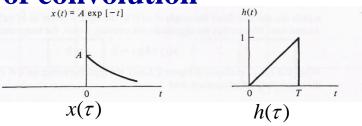
• Graphical interpretation of convolution

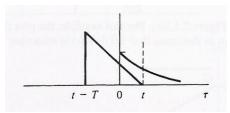
$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$





- 4. Integration
$$y(t_0) = \int_{-\infty}^{+\infty} x(\tau)h(t_0 - \tau)d\tau$$





- 2. Shift $g(\tau - t_0) = h(-(\tau - t_0)) = h(t_0 - \tau)$

LTI: GRAPHICAL CONVOLUTION

Example

$$y(t) = [2a \cdot p_{2a}(t)] \otimes [2a \cdot p_{2a}(t-a)]$$

OUTLINE

- Classifications of continuous-time system
- Linear time-invariant system (LTI)
- Properties of LTI system
- System described by differential equations

Memoryless LTI system

Review: present output only depends on present input

$$y(t) = Kx(t)$$

The impulse response of Memoryless LTI system is

$$h(t) = K\delta(t)$$

Causal LTI system

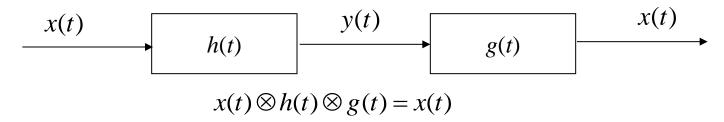
- Review: output depends on only current input and past input.
- The impulse response of causal LTI system must satisfy:

$$h(t) = 0 \qquad \text{for } t < 0$$

- Why?

Invertible LTI Systems

 Review: a system is invertible iff (if and only if) there is an inverse system that, when connected in cascade with the original system, yields an output equal to original system input



- For invertible LTI systems with IR (impulse response) h(t), there exists inverse system g(t) such that

$$g(t) \otimes h(t) = \delta(t)$$

- Example: find the inverse system of LTI system $h(t) = \delta(t - t_0)$

- BIBO Stable LTI state
 - Review: a system is BIBO stable iff every bounded input produces a bounded output.
 - LTI system: an LTI system is BIBO stable iff

$$\int_{-\infty}^{+\infty} |h(t)| dt < \infty$$

• Proof:

Examples

- Determine: causal or non-causal, memory or memoryless, stable or unstable
- $-1. h_1(t) = t \exp(-2t)u(t) + \exp(3t)u(-t) + \delta(t-1)$
- $-2. h_2(t) = -3\exp(2t)u(t)$
- 3. $h_3(t) = 5\delta(t+5)$

OUTLINE

- Classifications of continuous-time system
- Linear time-invariant system (LTI)
- Properties of LTI system
- System described by differential equations

DIFFERENTIAL EQUATIONS

 LTI system can be represented by differential equations

$$a_0 y(t) + a_1 y'(t) + \dots + a_N y^{(N)}(t) = b_0 x(t) + b_1 x'(t) + \dots + b_M x^{(M)}(t)$$

Initial conditions:

$$\frac{d^k y(t)}{dt^k} \bigg|_{t=0} k = 0, \dots, N-1$$

$$k=0,\cdots,N-1$$

Notation: n-th derivative:

$$y^{(n)}(t) = \frac{d^n y(t)}{dt^n}$$

DIFFERENTIAL EQUATION

Example:

- Consider a circuit with a resistor R = 1 Ohm and an inductor L = 1H, with a voltage source v(t) = Bu(t), and I_o is the initial current in the inductor. The output of the system is the current across the inductor.
 - Represent the system with a differential equation.
 - Find the output of the system with $I_o = 0$ and $I_o = 1$

DIFFERENTIAL EQUATION

$$a_0 y(t) + a_1 y'(t) + \dots + a_N y^{(N)}(t) = b_0 x(t) + b_1 x'(t) + \dots + b_M x^{(M)}(t)$$

$$\left. \frac{d^k y(t)}{dt^k} \right|_{t=0}$$

$$k=0,\cdots,N-1$$

Zero-state response

- The output of the system when the initial conditions are zero
- Denoted as $y_{zs}(t)$

Zero-input response

- The output of the system when the input is zero
- Denoted as $y_{zi}(t)$

The actual output of the system

$$y(t) = y_{zs}(t) + y_{zi}(t)$$

DIFFERENTIAL EQUATION

Example

 Find the zero-state output and zero-input response of the RL circuit in the previous example.

