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Abstract— An achievable rate region for a 3-node cooperative
multiple access channel (CMAC) is presented in this paper.
A CMAC contains multiple users cooperatively transmitting
information to a single destination node. It includes the tradi-
tional multiple access channel that assumes no communication
between source nodes, and multiple input single output (MISO)
system that contains ideal links between source nodes, as special
cases. The achievable rate regions for both general CMAC and
degraded Gaussian CMAC are derived with the assistance of
a block Markov encoding scheme. The impacts of cooperation
strategies between source nodes on node transmission ratesare
investigated by modeling node cooperation as a strategic game,
and the Nash equilibrium of cooperation strategy for degraded
Gaussian CMAC is identified.

I. I NTRODUCTION

A multiple access channel contains two or more users
transmitting information to a common destination through a
shared physical channel [1] – [3]. Examples of a multiple
access channel include a set of cell phones communicating
with a basestation, or a group of spatially distributed sensor
nodes transmitting data to a central data collection point.

Two types of multiple access channels with different cooper-
ation strategies have been studied extensively in the literature.
The first type of multiple access channel, which is denoted
as traditional multiple access channel in this paper, assumes
that all source nodes (users) do not attempt to detect or relay
information transmitted by other source nodes [1] – [4]. As
a result, source nodes transmit independent signals without
explicit form of cooperation. The second type of multiple
access channel assumes that each source node is fully aware
of the information to be transmitted by all other source nodes
in the network [4], [5], and it can be used to model a multiple
input single output (MISO) system with multiple transmission
antennas and one receiving antenna. In this case, all users
(antennas) can transmit cooperatively by utilizing the channel
as an ordinary one user channel.

In practical communication networks with full-duplex
source nodes, each source node can detect and relay signals
transmitted by other users. We define cooperative multiple
access channel (CMAC) as a multiple access channel that
allows users to relay each other’s information to destination.
In this paper, we focus on the study of a 3-node CMAC with
two source nodes,N1 andN2, and one destination node,D,
as shown in Fig. 1. The two source nodes transmit their own
information as well as perform cooperative communication by
relaying each other’s information to the destination. Thus, a
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Fig. 1. A 3-node cooperative multiple access channel.

CMAC can be considered as an overlay of two relay channels
[6], [7], N1 → N2 → D, and N2 → N1 → D, and a
traditional multiple access channel,(N1, N2) → D.

An achievable rate region for a 3-node cooperative multiple
access channel is developed with the assistance of a block
Markov encoding scheme. During the transmission of each
information block, each source node will transmit not only its
own message, but also a cooperative message derived based on
distorted observation of signal transmitted by the other source
node in the previous block. Achievable rate regions for both
general CMAC and degraded Gaussian CMAC are developed.
The results include the capacity regions of traditional multiple
access channel, MISO system, and relay channel as special
cases. The impact of different cooperation strategies between
the two source nodes on rate regions are investigated with the
help of game theory and Nash equilibrium.

II. PRELIMINARIES

Consider a 3-node network as shown in Fig. 1. Letxs ∈ Xs

and ys ∈ Ys denote the signals transmitted and received by
source nodeNs, respectively, fors = 1, 2, and y ∈ Y the
signal received at the destination nodeD. The discrete mem-
oryless cooperative multiple access channel can then be repre-
sented as(X1×X2, p(y, y1, y2|x1, x2),Y×Y1×Y2). The con-
ditional probability density function (pdf),p(y, y1, y2|x1, x2),
defines the statistical properties of the transfer functionfrom
each input pair,(x1, x2) ∈ X1 × X2, to an output tuple,
(y, y1, y2) ∈ Y × Y1 × Y2.

The two source nodes perform cooperation by relaying each
other’s information to destination. We denote the communi-
cation links between the source nodes,i.e., N1 → N2 and
N2 → N1, as cooperative links. Traditional multiple access
channel and MISO system assume a cooperative link with
capacity 0 and∞, respectively. In CMAC, the cooperative
link capacity can be any value in the range of[0,∞).

The analysis of the achievable rate region is based on the
concept of typical sequence. For completeness, we list the



definition and properties of typical sequence as follows [8].
Definition 1: Consider a group ofp length-n random

sequences,(x1,x2, · · · ,xp), drawn according to the pdf,
∏n

k=1 p (x1k, x2k, · · · , xpk), where xmk ∈ Xm is the kth
element of the length-n sequencexm, for m = 1, · · · , p.
Define the jointlyǫ-typical set of(x1,x2, · · · ,xp) as

Aǫ (X1, · · · , Xp) =
{

(x1, · · · ,xp) ∈ Xn
1 × · · · × Xn

p :
∣

∣

∣

∣

− 1

n
log p(s) − H(S)

∣

∣

∣

∣

≤ ǫ, ∀S ⊆ {X1, · · · , Xp}
}

, (1)

whereH(S) is the entropy of the random variable vectorS.
Lemma 1:For any ǫ > 0 and S ⊆ {X1, · · · , Xp}, there

exists an integern such thatAǫ(S) satisfies

P{Aǫ(S)} ≥ 1 − ǫ, ∀S ⊆ {X1, · · · , Xp} . (2a)

s ∈ Aǫ(S) ⇒
∣

∣

∣

∣

− 1

n
log p(s) − H(S)

∣

∣

∣

∣

≤ ǫ, (2b)

(1 − ǫ)2n(H(S)−ǫ) ≤ |Aǫ(S)| ≤ 2n(H(S)+ǫ), (2c)
Lemma 2:Let (U,V,W) ∼ ∏n

k=1 p(uk, vk, wk) and
(U′,V′,W) ∼ ∏n

k=1 p(uk|wk)p(vk|wk)p(wk). Then for the
n that yieldsP {Aǫ(U, V, W )} ≥ 1 − ǫ,

(1 − ǫ)2−n(I[U ;V |W )+ǫ] ≤ P {(U′,V′,W) ∈ Aǫ(U, V, W )}
≤ 2−n[I(U ;V |W )−ǫ].

III. A N ACHIEVABLE RATE REGION

Based on the definitions and preliminaries presented in
Section II, an achievable rate region for a general cooperative
multiple access channel is developed in this section.

To facilitate analysis, define auxiliary random variables
(RVs),Cs andC0, which are used to represent respectively the
self information and cooperative information to be transmitted
at source nodeNs, for s = 1, 2. The actual signal transmitted
at Ns is denoted asXs, which is a function ofCs andC0, and
the signals received at nodesNs andD are represented asYs

and Y , respectively. With the above book keeping notations,
the achievable rate region for the cooperative multiple access
channel is presented as follows.

Theorem 1:For a 3-node cooperative multiple access chan-
nel, the achievable rate region is the union of(R1, R2)
satisfying the following inequalities

R1 < min {I(X1; Y2|X2), I(X1; Y |C2)} , (3a)

R2 < min {I(X2; Y1|X1), I(X2; Y |C1)} , (3b)

R1 + R2 < I(X1, X2; Y ). (3c)
The achievability of the rate region will be proved by

showing that there exists a random code that can achieve the
conditions as shown in (3). The details are presented in the
following two subsections.

A. Encoding and Decoding

We present in this subsection a random coding scheme that
can achieve the rate region described in Theorem 1.

1) Random Codebook.First generate2nR0 indepen-
dent identically distributed (i.i.d.)n-sequences,c0 =
[c01, · · · , c0n], each drawn according to the joint pdf,p(c0) =

∏n

k=1 p(c0k). Index them asc0(m), for m ∈ M0 =
{

1, 2, · · · , 2nR0
}

.

For eachc0(m), generate2nRs conditionally independentn-
sequences,xs = [xs1, · · · , xsn], according to the conditional
pdf, p(xs|c0(m)) =

∏n

k=1 p(xsk|c0k(m)), for s = 1 and 2,
respectively. Index the sequencesxs asxs(ms|m), for ms ∈
Ms =

{

1, 2, · · · , 2nRs

}

. This results in a random codebook,
C = {c0(m),x1(m1|m),x2(m2|m)}.

Randomly partition the set of index pairs,M12 = M1 ×
M2, into 2nR0 subsets as,M12 = {S1,S2, · · · ,S2nR0}, such
that ∀(u, v) ∈ M12 and ∀m ∈ M0, P {(u, v) ∈ Sm} =
2−nR0 .

2) Encoding.The information are transmitted in blocks. For
a duration ofB blocks, the information to be transmitted by
source nodeNs is denoted as[m(1)

s , m
(2)
s , · · · , m

(B)
s ] ∈ MB

s .

At the end of block i − 1, assume that nodeN1

knows m
(i−1)
2 , N2 knows m

(i−1)
1 , and the destination node

D knows
(

m
(i−2)
1 , m

(i−2)
2

)

. As a result, the index pair,
(

m
(i−1)
1 , m

(i−1)
2

)

, is known at boths1 and s2 at the end
of block i − 1. Let Sm(i−1) denote the partition containing
(

m
(i−1)
1 , m

(i−1)
2

)

. Based on the indexm(i−1), which is

known at both source nodes, selectc0

(

m(i−1)
)

.

At source nodeNs, select and transmit then-sequence,
xs

(

m
(i)
s |m(i−1)

)

, where m
(i)
s is the new information to

be transmitted by nodeNs at block i, and m(i−1) is the
cooperative information.

3) Decoding.At the end of blocki, the received signal
at source nodeNs is y

(i)
s . Source nodeN1 declares

m̂
(i)
2 = v if there is one and only onev ∈ M2 such that

{

c0

(

m(i−1)
)

,x1

(

m
(i)
1 |m(i−1)

)

,x2

(

v|m(i−1)
)

,y
(i)
1

}

∈
Aǫ(C0, X1, X2, Y1). Similarly, source nodeN2 declares
m̂1(i) = u if there is one and only oneu ∈ M1 such that
{

c0

(

m(i−1)
)

,x1

(

u|m(i−1)
)

,x2

(

m
(i)
2 |m(i−1)

)

,y
(i)
2

}

∈
Aǫ(C0, X1, X2, Y2).

The decoding at destination node consists of three
steps. First, the destination node declaresm̂(i−1) = w
if there is one and only onew ∈ M such that
{

c0(w),y(i)
}

∈ Aǫ(C0, Y ), where y(i) is the received
signal at the destination node at the end of blocki. Second,
the destination node calculates its ambiguity set,L(i),
which contains all the index pairs,(u, v) ∈ M12, such that
{

c0

(

m(i−1)
)

,x1

(

u|m(i−1)
)

,x2

(

v|m(i−1)
)

,y(i)
}

∈
Aǫ(C0, X1, X2, Y ). Third, the receiver declares
(

m̂
(i−1)
1 , m̂

(i−1)
2

)

= (u, v) if there is one and only one

pair of (u, v) ∈ M12 satisfying(u, v) ∈ L(i − 1) ∩ Sm(i−1) .

B. Probability of Error

The average error probability of the above random coding
scheme is analyzed in this subsection. To facilitate the error
probability analysis, define the following events.



E0uvw(i):
{

c0(w),x1 (u|w) ,x2 (v|w) ,y
(i)
1 ,y

(i)
2 ,y(i)

}

is jointly ǫ-typical.

E1v(i):
{

c0

(

m(i−1)
)

,x1

(

m
(i)
1 |m(i−1)

)

,

x2

(

v|m(i−1)
)

,y
(i)
1

}

is jointly ǫ-typical.

E2u(i):
{

c0

(

m(i−1)
)

,x1

(

u|m(i−1)
)

,

x2

(

m
(i)
2 |m(i−1)

)

,y
(i)
2

}

is jointly ǫ-typical.

E3w(i):
{

c0 (w) ,y(i)
}

is jointly ǫ-typical.
E4uv(i): (u, v) ∈ L(i − 1) ∩ Sm(i−1) .

Without loss of generality, assume that the index pair,(1, 1),
is transmitted during blocksi−1 andi, and(1, 1) ∈ S1. Based
on the encoding and decoding scheme described earlier, define
the error eventFi for decoding error at blocki as

Fi=Ec
0111(i)∪

(

∪
v 6=1

E1v(i)

)

∪
(

∪
u6=1

E2u(i)

)

∪
(

∪
w 6=1

E3w(i)

)

∪






Ec

411(i) ∪
u6=1

E4u1(i) ∪
v 6=1

E41v(i) ∪
u6=1

v 6=1

E4uv(i)






.

whereEc denotes the complement of eventE.
From Lemmas 1 and 2, it can be shown that,∀ǫ and forn

sufficiently large,

P
{

Ec
0111(i)|F c

i−1

}

<
ǫ

8B

P

{

∪
v 6=1

E1v(i)|F c
i−1

}

<
ǫ

8B
, if R2<I(X2; Y1|X1)

P

{

∪
26=1

E2u(i)|F c
i−1

}

<
ǫ

8B
, if R1<I(X1; Y2|X2)

P

{

∪
w 6=1

E3w(i)|F c
i−1

}

<
ǫ

8B
, if R0<I(C0; Y )

where I(Xs; Yt|C0, Xt) = I(Xs; Yt|Xt) is used for the
second and third inequalities. The analysis is similar to that
in [7], and details are omitted here for brevity.

Next we evaluate the error probabilities related to the event
of E4uv(i). To simplify notation, defineA1 , Ec

411(i)|F c
i−1,

A2 , ∪
u6=1

E4u1(i)|F c
i−1, A3 , ∪

v 6=1
E41v(i)|F c

i−1, and A4 ,

∪
u6=1

v 6=1

E4uv(i)|F c
i−1.

1) P {A1} . From Lemma 1, we have
P {(1, 1) /∈ L(i − 1)} < ǫ

16B
, and P {(1, 1) /∈ Sm(i−1)} =

P {Ec
31(i)} < ǫ

16B
, for n sufficiently large. Thus

P{A1}<P {(1, 1)/∈L(i − 1)}+P {(1, 1) /∈ Sm(i−1)}<
ǫ

8B
.

2) P {A2} andP {A3}. P{A2} can be expressed as

P{A2} ≤
2nR1
∑

u=2

P {(u, 1) ∈ L(i − 1)}P {(u, 1) ∈ Sm(i−1)} .

From Lemma 2, foru 6= 1, P {(u, 1) ∈ L(i − 1)} <
2−n[I(X1;Y |C0,X2)−ǫ]. Based on the random partition ofM12,
we haveP {(u, 1) ∈ Sm(i−1)} = 2−nR0 . Thus,

P {A2} < 2−n[I(X1;Y |C2)−R1−ǫ], (4)

whereC2 is defined as a RV with entropy satisfyingH(C2) =
H(X2|C0), and R0 < I(C0; Y ) is used in the analysis.
Therefore, if R1 < I(X1; Y |C2), then P {A2} < ǫ

8B
for

n sufficiently large. Similarly, ifR2 < I(X2; Y |C1), with
H(C1) = H(X1|C0), P {A3} < ǫ

8B
for n sufficiently large.

3) P {A4}. The probability can be expressed as

P {A4} ≤
2nR1
∑

u=2

2nR2
∑

v=2

P {(u, v)∈L(i − 1)}P {(u, v)∈Sm(i−1)} .

From Lemma 2, P {(u, v) ∈ L(i − 1)} <
2−n[I(X1,X2;Y |C0)−ǫ]. Thus

P {A4} < 2−n[I(X1,X2;Y )−(R1+R2)−ǫ], (5)

whereR0 < I(C0; Y ) andI(C0, X1, X2; Y ) = I(X1, X2; Y )
are used in the analysis. Therefore,P {A4} < ǫ

8B
with R1 +

R2 < I(X1, X2; Y ) andn sufficiently large.
From the analysis above, with the rates inequalities given

in (3), ∀ǫ and for sufficiently largen, the conditional error
probability for thei-th block satisfiesP{Fi|F c

i−1} < ǫ
B

.
For B consecutive blocks, the error probability is given by

Pe≤P

{

B
∪

i=1
Fi

}

=

B
∑

i=1

P
{

Fi ∩ F c
i−1 ∩ · · · ∩ F c

1

}

≤
B

∑

i=1

P
{

Fi ∩ F c
i−1

}

≤
B

∑

i=1

P
{

Fi|F c
i−1

}

< ǫ.

This completes the proof of Theorem 1.

IV. T HE DEGRADED GAUSSIAN CMAC

An achievable rate region for a degraded Gaussian CMAC
is presented in this section. The signals at a 3-node Gaussian
cooperative multiple access channel can be represented by

ys = xs + zs, for s = 1, 2, (6a)

y = x1 + x2 + z, (6b)

where xs, ys, and zs are the transmitted signal, received
signal, and noise at source nodeNs, respectively,y is the
received signal at destination node, andz is the noise at
destination node. The noise components,z1, z2, z, are zero-
mean Gaussian distributed with varianceσ2

1 , σ2
2 , and σ2,

respectively. A degraded Gaussian cooperative multiple access
channel is defined as one withσ2 ≥ max{σ2

1 , σ
2
2}.

A. Achievable Rate Region

Theorem 2:For a degraded Gaussian cooperative multiple
access channel, the following rate region is achievable

Rs ≤ rs , min

{

1

2
log

(

1 +
ᾱsPs

σ2
t

)

,

1

2
log

(

1 +
Ps+αtPt+2

√
α1α2P1P2

σ2

)}

(7a)

R1 + R2 ≤ r12 ,
1

2
log

(

1+
P1+P2+2

√
α1α2P1P2

σ2

)

(7b)

where(s, t) ∈ {(1, 2), (2, 1)}, Ps is the transmission power



of nodeNs, ᾱs = 1−αs, and the union of regions is defined
over all (α1, α2) ∈ [0, 1]2.

Proof: Select a random coding scheme such that the
information transmitted at source nodeNs is

Xs =
√

αsPsC0 +
√

ᾱsPsC1, u = 1, 2, (8)

whereCs and C0 are zero mean unit variance Gaussian RV,
with C0 being the cooperative component andCs the new
information to be transmitted by nodeNs. The variable,αs ∈
[0, 1], is the cooperative coefficient defined as the percentage
of transmission power allocated by nodeNs for cooperation.
Substituting (8) into (3) and (6) leads to (7).

The rate region given in (7) captures the effects of coop-
eration between the source nodes in terms of the cooperation
coefficients,(α1, α2). Settingαs = 0 corresponds to the case
of no cooperation, and (7) degrades to the capacity region
of traditional multiple access channel [3, Eqns. (15.145) and
(15.149)]; settingαs = 1 corresponds to the case of full
cooperation, and (7) degrades to the capacity of MISO system
if Ps

σ2
t

= ∞ [4, Eqn. (1)]. For a general CMAC, the values of
(α1, α2) can be chosen by following different system design
criteria. For example, the nodes can either compete with
each other to maximize their respective transmission rates, or
collaborate with each other to maximize the total transmission
rate. We denote the first case as competing mode and the
second case as collaborative mode.

B. Competing Source Nodes

The competing operation mode can be used to model a
network with nodes competing for common resources,e.g.,
two wireless terminals connecting to the Internet through the
same access point. In this case, nodeNs will choose the value
of αs that can maximize its own transmission rate based on the
knowledge of the value ofαt selected by nodeNt. This can
be modeled as a strategic non-cooperative game [9] with the
available strategies for player (node)Ns being0 ≤ αs ≤ 1. In
this paper, we define the payoff function of the game as the
transmission rate boundaryrs given in (7).

In this strategic game, for a given value ofαt, nodeNs will
chooseαs such thatrs is maximized, and such operation is
summarized in the following Corollary.

Corollary 1: Given αt from nodeNt, nodeNs will maxi-
mize its own transmission rate boundary,rs, by settingαs =
fs(αt) defined as follows

fs(αt),















0, if Ps

σ2
t

≤ αtPt

σ2−σ2
t

,

1−

„
r

Ps

σ2
t

−αtPt

σ2 +

r

αtPt

σ2
t

−αtPt

σ2

«2

Ps

σ2
t

σ2

σ2
t

, if Ps

σ2
t

> αtPt

σ2−σ2
t

.
(9)

The corresponding rate boundary is

rs(αt) =
1

2
log

[

1 +
Ps − fs(αt)Ps

σ2
t

]

. (10)

Proof: The results are derived based on the expres-
sion in (7a). To simplify notation, defineξ1 , ᾱsPs

σ2
t

, and

ξ2 ,
Ps+αtPt+2

√
α1α2P1P2

σ2 . Since αs ∈ [0, 1], we have

ξ1 ∈
[

0, Ps

σ2
t

]

, andξ2 ∈
[

Ps+αtPt

σ2 , Ps+αtPt+2
√

αtP1P2

σ2

]

.

If Ps

σ2
t

≤ αtPt

σ2−σ2
t

, then it can be shown thatPs

σ2
t

≤ Ps+αtPt

σ2 .
It’s obvious thatξ1 ≤ ξ2 always holds, and this leads tors =
1
2 log

(

1 + ᾱsPs

σ2
t

)

, which can be maximized by settingαs = 0.

If Ps

σ2
t

> αtPt

σ2−σ2
t

, then Ps

σ2
t

> Ps+αtPt

σ2 . In this case, the ranges
of ξ1 and ξ2 overlap, and the value ofαs that maximizesrs

can be obtained by solvingξ1 = ξ2, which is a second order
linear equation. The details are omitted here for brevity, and
the solution is given in (9).

Eqn. (10) can be obtained by substituting (9) into (7a).
The two source nodes will choose their respective strategies

following (9) until it reaches a steady state. The steady state
strategy for such game is the well known Nash equilibrium
(NE) [10], which is the strategy with the property that no
player can benefit from unilateral deviating from its strategy.
If (α∗

1, α
∗
2) ∈ [0, 1]2 is an NE, then it satisfies

rs (α∗
s, α

∗
t ) ≥ rs (αs, α

∗
t ) , ∀αs ∈ [0, 1], (s, t)∈{(1,2), (2,1)} .

From Corollary 1, the Nash Equilibrium of the game, if
exist, must satisfy the following solution

(α∗
1, α

∗
2) = f (α∗

1, α
∗
2) , [f1(α

∗
2), f2(α

∗
1)] . (11)

Therefore, the NE is a fixed point of the functionf(x), where
x = [x1, x2]. The existence of NE in this game depends on
the properties of the functionf(x), which are summarized in
the following two Lemmas.

Lemma 3: f(x) is surjective over[0, 1]2.

Proof: To simplify notation, definea =
√

Ps

σ2
t

/xPt

σ2 − 1,

b =
√

σ2

σ2
t

− 1, then the value offs(x) can be simplified to

fs(x) = (a+b)2

(a2+1)(b2+1) , if Ps

σ2
t

> xPt

σ2−σ2
t

. It can be shown that
fs(x) ∈ [0, 1] by expanding its numerator and denominator.
Thus the range and domain offp(x) is both [0, 1].

Lemma 4: f(x) is continuous over[0, 1]2.
Proof: It’s trivial that fs(x) is continuous whenPs

σ2
t

6=
xPt

σ2−σ2
t

. Definex0 , Ps

σ2
t

σ2−σ2
t

Pt

. From (11), we have

lim
x→x

+
0

fs(x)=

[

√

Ps

σ2
t

− Ps

σ2
t

σ2−σ2
t

Pt

Pt

σ2 +

√

Ps

σ2
t

σ2−σ2
t

Pt

(

Pt

σ2
t

− Pt

σ2

)

]2

Ps

σ2
t

σ2

σ2
t

,

which simplifies to 0, orfs(x0). Thereforefs(x) is continuous
over [0, 1], and it can be shown thatf(x) is continuous over
[0, 1]2.

The existence of the NE is stated as follows.
Proposition 1: For a degraded Gaussian cooperative mul-

tiple access channel with two competing source nodes, there
exists at least one Nash equilibrium.

Proof: The existence of NE is equivalent to the existence
of fixed point for the functionf(x). Sincef(x) is surjective
and continuous on[0, 1]2, there must be at least one fixed point
based on the fixed point theorem [11].

The NE can be obtained by iteratively updating the values
of α1 andα2 following (9) by the two users. It should be noted
that in most system configurations the maximum transmission



rate given in (10) can not be simultaneously achieved by the
two source nodes due to the limit on the total rateR1 + R2

as given in (7b), and details are illustrated with numerical
examples in Section V.

C. Collaborative Source Nodes

The collaborative operation mode can be used to model a
network with source nodes belonging to the same operator
and sharing common interests,e.g., nodes in a wireless sensor
network transmit data to a central data collection point. Given
certain system configuration, the two source nodes can col-
laborate with each other to select the values of(α1, α2) such
that the total transmission rate,R1 + R2, is maximized,i.e.

(

α+
1 , α+

2

)

= argmax
(α1,α2)∈[0,1]2

{min [r12, r1 + r2]} ,

wherers andr12 are defined in (7). The solution of (12) eludes
a closed-form expression. It can be evaluated numerically and
the results are discussed in Section V.

V. NUMERICAL EXAMPLES

Numerical examples are given in this section to demonstrate
the achievable rate region for degraded Gaussian cooperative
multiple access channel under various system configurations.

First we investigate the case with symmetric cooperative
links, i.e., P1

σ2
2

= P2

σ2
1
. Fig. 2(a) shows the rate regions when

Ps

σ2
t

= 6dB. In this figure, the rate regions for network in
collaborative mode and competing mode are defined by the
polygons, ‘a-b-c-o’ and ‘d-e-f-g-o’, respectively. Network in
collaborative mode has a larger total data rate (point b), yet
network in competing mode can achieve a larger unbalanced
individual transmission rate (section ‘d-e’ or ’f-g’). It should
be noted that in competing mode the maximum data rates
for the two source nodes cannot be achieved simultaneously.
The difference in total transmission rate between the two
modes can be reduced by increasingPs

σ2
t

as shown in Fig. 2(b),

where Ps

σ2
t

= 20dB and competing mode can achieve a total
transmission rate similar to collaborative mode.

The case with asymmetric cooperative links,P1

σ2
2

6= P2

σ2
1
,

is investigated in Fig. 3. The results in Fig. 3 indicate that
the difference betweenP1

σ2
2

and P2

σ2
1

has little impact on the
rate region of network operating in competing mode. On
the other hand, the rate region for network in collaborative
mode changes dramatically with the increase of the difference
between the two cooperative links. WhenP1

σ2
2

= 20dB, the
rate region under collaborative mode collapses to a single line
‘a-b’, which corresponds toR2 = 0. Thus source nodeN2

stops transmission of its own information and degrades to a
pure relay node. In this case, the cooperative multiple access
channel degrades to a relay channel as described in [7].

VI. CONCLUSIONS

An achievable rate region for a 3-node cooperative multi-
ple access channel was presented in this paper. The results
include the traditional multiple access channel, MISO system,
and relay channel as special cases. With the help of game
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Fig. 2. Rate regions for networks with symmetric cooperative links
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theory and Nash equilibrium, the impact of node cooperation
strategies on the achievable rate regions of degraded Gaussian
cooperative multiple access channel was investigated under
competing mode and collaborative mode. Numerical examples
show that, for collaborative mode, if the signal to noise
ration (SNR) of one cooperative link is significantly higher
than the SNR of the other cooperative link, the source node
corresponding to the transmitter of the weaker cooperativelink
will degrade to a pure relay node. The asymmetry between the
two cooperative links has little impact on the rate region of
network in competing mode.
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