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Maximizing Spectral Efficiency for High Mobility
Systems with Imperfect Channel State Information

Ning Sun and Jingxian Wu

Abstract—This paper studies the optimum system design that
can maximize the spectral efficiency of high mobility wireless
communication systems with imperfect channel state information
(CSI). The fast time-varying fading in high mobility systems can
be tracked with pilot-assisted channel estimation. The percentage
of pilot symbols in the transmitted symbols plays a critical role
on the system performance: a higher pilot percentage yields a
more accurate channel estimation, but also more overhead. The
effects of pilot percentage are quantified through the derivation
of the channel estimation mean squared error (MSE), which
is expressed as a closed-form expression of various system
parameters through asymptotic analysis. It is discovered that,
if the pilots sample the channel above its Nyquist rate, then the
estimation of the channel coefficients of data symbols through
temporal interpolation yields the same asymptotic MSE as the
direct estimation of the channel coefficients of the pilot symbols.
Based on the statistical properties of the channel estimation
error, we quantify the impacts of the imperfect CSI on the
system performance by developing the analytical symbol error
rate (SER) and a spectral efficiency lower bound of the communi-
cation system. The optimum pilot percentage that can maximize
the spectral efficiency lower bound is identified through both
analytical and simulation results.

Index Terms—High mobility communications, imperfect chan-
nel state information, channel estimation error, spectral effi-
ciency.

I. INTRODUCTION

H IGH mobility wireless communications have received
increasing attentions recently with the growing demands

for applications such as high speed railways and aircraft com-
munications. One of the main challenges faced by high mobil-
ity communications is the fast time-varying fading caused by
the Doppler shift, which could be as high as 1,000 Hz for a 2.4
GHz system operating at a speed of 450 km/hr. In a high mo-
bility system, the accurate estimation and tracking of the fast
time-varying fading are critical to reliable system operations.
Channel estimation can be performed either through the direct
estimation of the fading coefficients [1]-[10], or through basis
expansion models (BEMs) that transform fading coefficients
to low-dimensional transform domains [11], [12].

Many channel estimation related works focus on the design
of optimum pilot patterns that can minimize the channel
estimation mean squared error (MSE) [1]-[6], [12]. In [1]-
[4], the optimum pilot design for orthogonal frequency divi-
sion multiplexing (OFDM) systems employing the minimum
mean squared error (MMSE) channel estimation is discussed,

Manuscript received May 1, 2013; revised September 12, 2013; accepted
November 13, 2013. The associate editor coordinating the review of this paper
and approving it for publication was W. Zhang.

The authors are with the Department of Electrical Engineering, University
of Arkansas, Fayeteville, AR, 72701, U.S.A. (e-mail: {nsun, wuj}@uark.edu).

Digital Object Identifier 10.1109/TWC.2014.012314.130772

and it is shown that the MSE can be minimized by using
identical equally-spaced pilot tones or clusters. The MMSE
estimator requires the priori knowledge of channel statistics,
yet such information is not needed by a least squares (LS)
channel estimator. In [5], the optimum pilot pattern for the
LS estimation of quasi-static channel in OFDM systems is
obtained through numerical convex optimizations. The LS
estimation of doubly selective fading channels are discussed
in [6] for a multiple-input multiple-output (MIMO) OFDM
system, where the pilot matrix is designed as a unitary matrix
to avoid matrix inversions during the LS channel estimation.
A windowed LS (WLS) channel estimation with a BEM
channel model is proposed in [12], and it is shown that the
estimation accuracy of WLS can approach that of MMSE-
based estimators. All above methods are designed by using
the MSE as a metric under the constraint of fixed pilot power
and/or pilot numbers. They do not consider how the pilot
patterns or imperfect channel state information (CSI) impacts
the overall communication performance, such as the bit error
rate (BER), spectral efficiency, or energy efficiency.

In high mobility systems, channel estimation errors are non-
negligible and they might have significant impacts on the
system performance and designs [7]-[9]. In [7], it is discovered
that systems employing LS or MMSE channel estimations
can achieve the same symbol error rate (SER) performance
if the optimum receivers are designed by considering the
statistics of the channel estimation errors. In [8], the impacts
of channel estimation error on the BER of an ultra-wide band
(UWB) system are studied. Both [7] and [8] use system error
probability as the design metric. An information theoretic
metric, a sum-rate lower bound of a two-way relay network, is
used in [9] to evaluate the system performance in the presence
of imperfect CSI. The sum-rate lower bound is numerically
maximized by considering parameters such as training vector
structures and the number of training symbols. A quasi-static
block fading model is assumed in [7]-[9], thus the results are
not applicable to high mobility systems. In [10], the tracking
of a time-varying channel is achieved by using polynomial
interpolations, and the results are used to quantify the BER of
a two-way relay system. It is demonstrated that polynomial
interpolations might not be sufficient to track the channel
variation in high mobility systems.

In this paper, the optimum pilot design that maximizes the
spectral efficiency of high mobility wireless communication
systems is studied. The fast time-varying fading coefficients
are estimated and tracked through the MMSE estimation
and interpolation. The MSE of channel coefficients of pilot
symbols and data symbols are studied through the asymptotic
analysis, and the results are expressed as closed-form expres-
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Fig. 1. The transmitted slot structure.

sions of parameters such as the maximum Doppler spread,
the signal-to-noise ratio (SNR) of received pilot symbols, and
the percentage of pilot symbols in the transmitted symbols.
It is discovered that, if the pilots sample the channel at
or above the Nyquist rate of the time-varying fading, then
the MMSE interpolation of the channel coefficients of data
symbols yields the same asymptotic MSE as the estimation
of the channel coefficients of pilot symbols. The statistical
properties of the estimated channel coefficients are studied,
and the results are used to develop an analytical SER and
a spectral efficiency lower bound for systems operating with
imperfect CSI. A higher pilot percentage yields a better SER.
However, a lower SER does not necessarily mean a better
overall performance, considering the fact that the excessive
use of pilot symbols means more overhead. Such a tradeoff
relationship is revealed in the system spectral efficiency. The
optimum pilot percentage that can maximize the spectral
efficiency lower bound is analytically identified. The impacts
of imperfect CSI on system performance are studied through
both analytical and simulation results.

The remainder of this paper is organized as follows. The
system model is presented in Section II. Section III studies
the analytical asymptotic MSE for channel estimation and
interpolation. The impacts of the imperfect CSI on the SER
are studied in Section IV by analyzing the statistical properties
of the estimated channel coefficients. In Section V, a spectral
efficiency lower bound is developed for systems with imper-
fect CSI, and the optimum pilot percentage that maximizes the
spectral efficiency is identified. Numerical results are given in
Section VI, and Section VII concludes the paper.

II. SYSTEM MODEL

Consider a system that employs pilot-assisted channel es-
timation and experiences fast time-varying fading. At the
transmitter, the data to be transmitted are divided into slots,
and each slot has Ns modulated data symbols and Np ≤ Ns

pilot symbols. The values of Ns and Np can be chosen
such that K = Ns

Np
+ 1 is an integer. The pilot symbols

are equally spaced such that each pair of adjacent pilot
symbols are separated by K − 1 data symbols. The slot
structure is shown in Fig. 1, where P and D denote the pilot
and data symbols, respectively. Define the symbol vector as
x = [x1, · · · , xN ]T ∈ SN×1, where N = Ns+Np is the total
number of symbols per slot, S is the modulation alphabet set,
and AT represents the matrix transpose. Denote the k-th pilot
symbol as xik = pk, where ik = kK is the index of the k-th
pilot symbol, for k = 1, · · · , Np. The average energy of the
symbols is normalized to 1, E(|xn|2) = 1, where E is the
mathematical expectation operator. Define the percentage of
the pilot symbols as δ =

Np

N = 1
K .

The data and pilot symbols are transmitted over the fast
time-varying fading channel with additive white Gaussian
noise (AWGN). The signals observed at the receiver is

y =
√
E0 ·X · h+ z, (1)

where y = [y1, · · · , yN ]T ∈ CN×1 is the received signal, z =
[z1, · · · , zN ]T ∈ CN×1 is the AWGN with covariance matrix
Rz = σ2

z IN , IN is a size-N identity matrix, E0 is the average
transmission energy of a symbol, h = [h1, · · · , hN ]T ∈ CN×1

is the channel fading coefficient vector, and X = diag(x) is
a size-N diagonal matrix with the transmitted signal vector
x on its diagonal. The time-varying fading coefficients are
correlated with the cross-correlation being

ρ(m− n) = E[hmh∗
n] = J0(2πfD |m− n|Ts), (2)

where ρ(k) ∈ (−1, 1], fD is the maximum Doppler spread of
the fading channel, Ts is the symbol period, and J0(x) is the
zero-order Bessel function of the first kind.

It is assumed that the energy per symbol E0 is fixed for both
data and pilot symbols. Therefore, the average transmission
power is P0 = E0

Ts
.

III. IMPACTS OF PILOT PERCENTAGE ON CHANNEL

ESTIMATION

In this section, the impacts of the pilot percentage on the
channel estimation MSE are analytically studied through the
asymptotic analysis. The channel estimation is performed in
two steps: the receiver first obtains an estimate of the channel
coefficients at pilot locations, then the channel coefficients
at non-pilot locations are obtained by performing MMSE
interpolations over the estimated CSI at pilot locations.

A. MMSE Channel Estimation at Pilot Locations

At the receiver, the distorted observations of the pilot
symbols can be expressed as

yp =
√
E0Php + zp (3)

where yp = [yi1 , yi2 , · · · , yiNp
]T ∈ CNp×1,

hp = [hi1 , hi2 , · · · , hiNp
]T ∈ CNp×1, and

zp = [zi1 , zi2 , · · · , ziNp
]T ∈ CNp×1 are the received signal

vector, fading vector, and noise vector at pilot locations,
respectively, and P is a size Np × Np diagonal matrix with
the diagonal elements being [p1, · · · , pNp ]

T ∈ SNp×1.
The estimate of the channel fading at the pilot locations hp

can be obtained by minimizing the average MSE, σ2
p,Np

=
1
Np

E(‖ĥp − hp‖2), as
ĥp = WH

p yp, (4)

where ĥp is an estimate of hp. The MMSE estimation matrix
Wp can be calculated as

Wp =
√
E0

(
E0PRhhP

H + σ2
z INp

)−1
PRhh (5)

where Rhh=E
[
hph

H
p

] ∈ CNp×Np with its elements defined
in (2), AH denotes the matrix Hermitian operation, and INp

is a size-Np identity matrix. The channel auto-correlation
matrix Rhh is a Toeplitz matrix with the (m,n)-th element
being J0

(
2πfD |m− n|Ts

δ

)
as defined in (2), where δ is the

percentage of pilot symbols.
The error correlation matrix, Ree = E

[
epe

T
p

]
, with ep =

ĥp − hp, can be calculated as

Ree=Rhh−Rhh

(
Rhh +

1

γ0
INp

)−1

Rhh (6)



1464 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 3, MARCH 2014

where γ0 = E0

σ2
z

is the signal-to-noise ratio (SNR) without
fading, and the assumption |pn|2 = 1 is used in the above
equation. This assumption can be easily met by choosing
only constant amplitude symbols, such as phase shift keying
symbols, as the pilot symbols. It should be noted that the data
symbols do not need to be of constant amplitude.

The average MSE can then be calculated as

σ2
p,Np

=
1

Np
trace(Ree). (7)

From (6) and (7), the calculation of the MSE involves matrix
inversion and the trace operation. In order to explicitly identify
the impacts of pilot percentage on the MSE, we resort to the
asymptotic analysis by letting Np → ∞ and Ns → ∞ while
keeping a finite pilot percentage δ and data rate Rs =

1
Ts

. The
results are presented as follows.

Proposition 1: When Np → ∞ while keeping a finite δ
and Rs, the asymptotic MSE, σ2

p = limNp→∞ σ2
p,Np

, of the
estimated channel coefficient at the pilot locations is

σ2
p = 1−

8γ0 arctan
(√

2γ0−α
δ

2γ0+
α
δ

)
π
√

(2γ0)2 − (αδ )
2

, for δ ≥ α

π
, (8)

where α = 2πfDTs, γ0 is the SNR without fading, and δ is
the pilot percentage.

Proof: The proof is in Appendix A.

B. MMSE Channel Interpolation

Once the estimates of the channel information at the pilot
locations are obtained, they can be interpolated to obtain the
channel estimations of the entire slot.

Consider the estimation of the fading coefficients with sym-
bol indices {i′k = (k−1)K+u}Np

k=1, where u = 1, · · · ,K−1
correspond to the indices of the non-pilot data symbols. Define
the fading vector to be estimated through interpolation as
hd = [h(i′1), · · · , h(i′Np

)]T∈ CNp×1.
The receiver obtains the estimate of the channel fading at

non-pilot locations, ĥd, as

ĥd = WH
d ĥp, (9)

where ĥd is an estimate of hd and Wd∈RNp×Np is the MMSE
channel estimation matrix to minimize 1

Np
E(‖ĥd − hd‖2).

With the orthogonal principal, E
[
(ĥd − hd)ĥ

T
p

]
= 0, we

have WH
d = RdĥR

−1

ĥĥ
, where

Rdĥ�E(hdĥ
H
p ) =

√
E0RdhP

HWp, (10a)

Rĥĥ�E(ĥpĥ
H
p )=WH

p (E0PRhhP
H+σ2

z INp)Wp (10b)

Thus the MMSE spatial interpolation can be expressed by

ĥd = RdĥR
−1

ĥĥ
ĥp. (11)

The cross-correlation matrix, Rdh = E(hdĥ
H
p ) ∈ RNp×Np ,

is a Toeplitz matrix with its first row being [ρ(−K +
u), ρ(−2K + u), · · · , ρ(−NpK + u)] and the first column
[ρ(−K + u), ρ(u), · · · , ρ((Np − 2)K + u)]T .

Combining (4), (10) and (11) yields

ĥd =
√
E0RdhP

H
(
E0PRhhP

H + σ2
z INp

)−1
yp. (12)

The corresponding error correlation matrix, Ψee �
E

[
(ĥd − hd)(ĥd − hd)

T
]
, can then be calculated by

Ψee = Rhh −Rdh

(
Rhh +

1

γ0
INp

)−1

Rhd, (13)

where Rdd = E(hdh
H
d ) = Rhh is used in the above equation,

and Rhd = RH
dh. The average MSE for spatial interpolation

is σ2
e,Np

= 1
Np

trace (Ψee). The asymptotic average MSE for
channel estimation through temporal interpolation is given in
the following proposition.

Proposition 2: When Np → ∞ while keeping a finite δ, if
δ ≥ α

π , then channel estimations through temporal interpola-
tion yields the same asymptotic MSE as channel estimations
at pilot locations, i.e., σ2

e = limNp→∞ σ2
e,Np

= σ2
p , with σ2

p

defined in (8).
Proof: The proof is in Appendix B.

The results in Proposition 2 state that the temporal inter-
polation will not degrade the channel estimation performance,
as long as the channel coefficients are sampled by the pilots
at a rate no less than the Nyquist rate, i.e., 1

Tp
≥ 2fD , or

equivalently, δ ≥ α
π . The temporal interpolation introduces a

time shift in the correlation between hd and hp. A shift in the
time domain corresponds to a phase shift in the frequency
domain as shown in (33) in Appendix C. The asymptotic
MSE is only related to the squared amplitude of the frequency
domain representation of the channel correlation as in (34). If
there is no spectrum aliasing, then the phase shift does not
have any impact on the asymptotic MSE.

IV. IMPACTS OF PILOT PERCENTAGE ON SYMBOL ERROR

PROBABILITY

In this section, the statistical properties of the estimated
channel are studied, and the results are used to derive the
SER in the presence of imperfect CSI.

A. Statistical Properties of the Estimated Channel

To build an explicit relationship between the channel es-
timation MSE and the SER, we first study the statistical
properties of the estimated channel. To simplify notation, the
data symbol index is dropped in the subsequent analysis.

Proposition 3: For a system operating in a Rayleigh fading
channel, the estimated channel coefficient, ĥ, is a complex
Gaussian random variable (CGRV) with zero mean and vari-
ance σ2

ĥ
= 1 − σ2

e , i.e., ĥ ∼ N (0, 1 − σ2
e), where σ2

e is the
channel estimation MSE.

Proof: The proof is in Appendix C.
Corollary 1: Consider a system operating in a Rayleigh

fading channel. Conditioned on the estimated channel coeffi-
cient ĥ, the true channel coefficient h is Gaussian distributed
with mean ĥ and variance σ2

e , i.e., h|ĥ ∼ N (ĥ, σ2
e).

Proof: The proof is in Appendix D.
The receiver performs detection based on the knowledge of

the received sample y and the estimated channel coefficient
ĥ. We have the following corollary regarding the likelihood
function, p(y|ĥ, x), in the presence of imperfect CSI.

Corollary 2: Consider a system operating in a Rayleigh
fading channel. If the channel coefficient is obtained through
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MMSE channel estimation, then the likelihood function,
p(y|ĥ, x), is a Gaussian probability density function (pdf),
with the conditional mean, uy|x,ĥ, and conditional variance,
σ2
y|x,ĥ, given by

uy|x,ĥ =
√
E0ĥx, (14)

σ2
y|x,ĥ = E0σ

2
e |x|2 + σ2

z . (15)

where σ2
e is the channel estimation MSE.

Proof: The proof is in Appendix E.

B. SER in the Presence of Imperfect CSI

The SER performance of systems with M -ary phase shift
keying (MPSK) modulations and imperfect CSI is studied in
this subsection by utilizing the statistical properties of the
channel estimation error.

For systems with equiprobable transmitted symbols and
imperfect CSI, the SER can be minimized by maximizing the
likelihood function, p(y|ĥ, x), which is a Gaussian pdf with
the conditional mean and variance given in Corollary 2. From
Corollary 2, the maximum likelihood decision rule for system
with MPSK can be expressed as

x̂ = argmin
x∈S

{ |y − uy|x,ĥ|2
σ2
y|x,ĥ

}
= argmin

x∈S

{
|μ− x|2

}
(16)

where S is the MPSK modulation alphabet set, and μ =
1√
E0

ĥ∗y is the decision variable for MMSE channel estima-
tion, with a∗ being the complex conjugate operator.

From eqn. (16), the SER can be calculated by finding the
probability that the decision variable μ is outside the decision
region of the transmitted symbol, thus the SER depends on the
statistical properties of μ. Given ĥ and the transmitted symbol
x, the decision variable μ is also Gaussian distributed with the
conditional mean and variance given by

uμ|x,ĥ = |ĥ|2x, (17a)

σ2
μ|x,ĥ = |ĥ|2(σ2

e +
1

γ0
). (17b)

Note that the identity |x|2 = 1 is used in the above derivation
for the MPSK modulated system.

With the statistical properties of the decision variable given
in (17), the SER of MPSK modulated systems with the
imperfect CSI is given in the following proposition.

Proposition 4: For an MPSK modulated system operating
in fast time-varying Raleigh fading channels, if the channel is
estimated with an MMSE estimator, then the SER is

P (E) =
1

π

∫ π− π
M

0

[
1 + ζ · sin

2( π
M )

sin2(φ)

]−1

dφ, (18)

where ζ =
1−σ2

e

σ2
e+

1
γ0

, and σ2
e is the asymptotic MSE of the

channel estimation given in Proposition 2.
Proof: The proof is in Appendix F.

In Proposition 4, the SER is expressed as a function of
the channel estimation MSE σ2

e and the SNR γ0. Since the
asymptotic MSE σ2

e is a function of δ and fD , the SER can
be expressed as an explicit function in δ, fD , and γ0.

V. MAXIMIZING SPECTRAL EFFICIENCY WITH IMPERFECT

CHANNEL INFORMATION

In this section, we study the optimum pilot design by
maximizing a lower bound of the spectral efficiency in the
presence of imperfect CSI. A higher pilot percentage yields
a better channel estimation, thus less detection errors at the
receiver. On the other hand, increasing pilot percentage will
decrease the number of data bits transmitted per unit time
per unit bandwidth. The optimum pilot percentage that can
balance this tradeoff is studied in this section.

Considering the presence of both pilot symbols and channel
estimation error, we can calculate the effective system spectral
efficiency as

η = Eĥ

[
Ns

N
C(ĥ)

]
= (1 − δ)Eĥ

[
C(ĥ)

]
, (19)

where the expectation is performed with respect to ĥ, C(ĥ) =
maxp(x) I(y;x|ĥ) is the maximum mutual information be-
tween y and x given the knowledge of the estimated channel
coefficient ĥ, with p(x) being the pdf of the input x. C(ĥ)
can be considered as the channel capacity in the presence
of imperfect CSI, and it quantifies the impact of channel
estimation error on the channel capacity.

It is difficult to obtain the exact expression of the conditional
channel capacity C(ĥ). A lower bound on C(ĥ) is given as
follows.

Lemma 1: For a system operating in a Rayleigh fading
channel with pilot-assisted MMSE channel estimation, the
channel capacity conditioned on the estimated channel coeffi-
cient is lower bounded by

Clow(ĥ) = log

(
1 + |ĥ|2 1

σ2
e +

1
γ0

)
(20)

Proof: The proof is in Appendix G.
Based on the results in Lemma 1, a lower bound on

the effective spectral efficiency is given by the following
proposition.

Proposition 5: For a system that employs MMSE channel
estimation and experiences Rayleigh fading, the average spec-
tral efficiency is lower bounded by

ηlow = (1− δ) exp

(
σ2
e + 1

γ0

1− σ2
e

)
Γ

(
0,

σ2
e +

1
γ0

1− σ2
e

)
, (21)

where Γ(s, x)=
∫∞
x ts−1e−tdt is the incomplete Gamma func-

tion.
Proof: The proof is in Appendix H.

It is straightforward to show that σ2
e is a decreasing function

in δ and an increasing function in fD . Thus ξ(δ) = 1−σ2
e

σ2
e+

1
γ0

is an

increasing function in δ. The spectral efficiency lower bound
in (21) can be alternatively represented as (46) in Appendix
I, which can be decomposed into two components, g1(δ) =

(1 − δ) and g2(δ) =
∫∞
0 exp(−v) log

(
1 + v

1−σ2
e

σ2
e+

1
γ0

)
dv.

The linear function g1(δ) is strictly decreasing in δ, and it
contributes to the spectral efficiency loss due to a higher
pilot percentage. On the other hand, g2(δ) is an increasing
function in δ, and it contributes to the spectral efficiency
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gain due to a more accurate channel estimation at a higher
δ. Therefore, g1(δ) and g2(δ) reveal two opposite effects of
the pilot percentage δ on the spectral efficiency.

The spectral efficiency lower bound is shown as a function
of δ in Fig. 2 under various values of the normalized Doppler
spread fDTs, where Ts is the symbol period. For a system with
symbol rate 100 ksym/s and operating at 1.9 GHz, the range of
the Doppler spread considered in the figure is between 100 Hz
(fDTs = 10−3) to 1 KHz (fDTs = 10−2), which correspond
to a mobile speed in the range between 56.8 km/hr and 568.4
km/hr. For all the system configurations in Fig. 2, it is observed
from the numerical results that ηlow is empirically concave in
δ 1. When δ is small, e.g., δ < 0.095 for fDTs = 0.01, ηlow

increases in δ. This indicates that, when δ is small enough,
the impact of channel estimation error dominates the effective
spectral efficiency. On the other hand, when δ becomes large
enough, e.g., δ > 0.095 for fDTs = 0.01, increasing δ further
will degrade the spectral efficiency because of the excessive
overhead caused by the high percentage of the pilot symbols.

For those system configurations that empirically show a
concave behavior of the spectral efficiency lower bound,
we can obtain the optimum pilot percentage that maximize
the spectral efficiency lower bound by solving the equation
∂ηlow

∂δ = 0, which can be expressed as

exp

(
σ2
e +

1
γ0

1− σ2
e

)
Γ

(
0,

σ2
e +

1
γ0

1− σ2
e

)[
(1− δ)(1 + 1

γ0
)

(1− σ2
e)

2
(σ2

e)
′−1
]

=
(1 − δ)(1 + 1

γ0
)

(σ2
e+

1
γ0
)(1−σ2

e)
(σ2

e)
′, (22)

where (σ2
e)

′ is the first derivative of σ2
e given as

(σ2
e)

′=
−4γ0α

[
δ
√
(2γ0)2−(αδ )2−2α arctan

(√
2γ0−α

δ

2γ0+
α
δ

)]
πδ3
[
(2γ0)2 − (αδ )

2
] 3

2

(23)

The eqn. (22) in δ can be solved numerically by using standard
software packages, such as fsolve in Matlab. It should be
noted that (22) should be used only if the spectral efficiency
lower bound for a given system configuration is concave in the
pilot percentage, and this can be empirically verified through
numerical results before the application of (22).

VI. NUMERICAL RESULTS

Numerical and simulation results are provided in this
section to verify the results obtained in this paper, and to
demonstrate the impacts of imperfect CSI on the system
performance.

Fig. 3 plots the numerical and simulated MSE of the channel
estimation at pilot and data locations as a function of the
pilot percentage, δ, under various values of slot length N . The
normalized Doppler spread is fDTs = 0.005 and the SNR is
γ0 = 10 dB. The analytical results with finite N are evaluated
by using (6) and (7), and the asymptotic analytical results
with N → ∞ are from Proposition 2. In the simulations, a

1We were not able to analytically show the concavity of ηlow in δ due to
the complex relationship involved between σ2

e and δ. However, the concavity
is observed in all of our numerical results through extensive simulations and
numerical studies, under a wide range of system parameters.
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slot length of N = 75, 000 is used to approximate the infinite
slot length. As expected, the MSE is a decreasing function
of the pilot percentage. At a given pilot percentage, a larger
N leads to a more accurate channel estimation due to the fact
that more pilots are available for estimation. When N is large,
e.g., N > 3000, increasing N further only leads to a slight
improvement in the MSE.

Fig. 4 shows the asymptotic MSE in Proposition 2 as
a function of pilot percentage, under various values of the
normalized Doppler spread fDTs. The SNR is γ0 = 10 dB. The
MSE obtained from simulations is also shown in the figure.
Both the MSE for channel estimation at pilot positions and
the MSE for channel interpolation at non-pilot locations are
shown in the figure, and they are the same as predicted by
Proposition 2. Excellent agreement is observed between the
analytical MSE obtained with infinite frame length and the
simulation results with finite frame length. As expected, the
MSE is a decreasing function in δ, and an increasing function
in fDTs.
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Fig. 4. The asymptotic MSE as a function of the pilot percentage.

The analytical and simulated SER of systems employing
binary phase shift keying (BPSK) modulation are shown in
Fig. 5. The SNR is γ0 = 10 dB. The analytical results can
accurately predict the actual SER in the presence of imperfect
CSI. Similar to the MSE, the SER is a decreasing function in
δ and an increasing function in fDTs. As δ increases, the SER
approaches a lower bound. Since the SER is decreasing in δ,
the SER lower bound is achieved at δ = 1, which corresponds
to the best possible channel estimation. From (8), the MSE at
δ = 1 is

σ̄2
e = 1−

8γ0 arctan
(√

2γ0−α
2γ0+α

)
π
√

(2γ0)2 − α2
, (24)

Replacing σ2
e in (18) with σ̄2

e in the above equation yields the
lower bound on the SER. The SER lower bounds are 0.0237,
0.0235, and 0.0233 for systems with fDTs = 0.01, 0.005, and
0.001, respectively. The SER of systems with perfect CSI is
also calculated, and the result is 0.0233, which is independent
of δ and coincides with the lower bound for the system with
fDTs = 0.001 and imperfect CSI.

In addition, it is also observed from Fig. 5 that, when
δ is small, the SER decreases dramatically as δ increases.
When δ reaches a certain threshold, increasing δ further only
yields very small performance gains, i.e., the slope of the
SER-δ curve approaches zero as δ increases. Therefore, the
desired pilot percentage can be chosen as the point such that∣∣∣∂P (E)

∂δ

∣∣∣ = ε, with ε being a small number. The slope of the
SER-δ curve can be calculated as

∂P (E)

∂δ
=

1

π

∫ π− π
M

0

⎧⎪⎨
⎪⎩

(1 + 1
γ0

)(σ2
e)

′ sin2( π
M

)

sin2(φ)[
σ2
e + 1

γ0
+ (1− σ2

e)
sin2( π

M
)

sin2(φ)

]2
⎫⎪⎬
⎪⎭ dφ (25)

where (σ2
e)

′ is the first derivative of σ2
e with respect to δ

given in (23). In Fig. 6, the desired pilot percentage is solved
by choosing ε = 10−5 and shown as functions of the the
normalized Doppler spread fDTs under different SNRs. The
desired pilot percentage increases as fDTs increases. This is
intuitive because a channel that changes faster needs a higher
pilot percentage.

Fig. 7 shows the spectral efficiency maximizing pilot per-
centage as a function of the normalized Doppler spread fDTs,
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Fig. 5. The SER as a function of the pilot percentage δ.
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Fig. 6. The desired pilot percentage obtained by solving (25) with ε = 10−5.

under various values of SNR. The optimum pilot percentage is
calculated by solving (22). The optimum pilot percentage is
a monotonically increasing function in fDTs, because more
pilots per unit time are required to compensate the faster
channel variation at higher Doppler spreads. At SNR = 10
dB, increasing fDTs from 2 × 10−3 to 10−2 will double the
optimum pilot percentage from 4% to 8%. In addition, a lower
pilot percentage is required for systems with higher SNR due
to the better channel estimation quality when the SNR is high.

VII. CONCLUSIONS

The optimum system designs for high mobility wireless
communication systems with imperfect CSI have been studied
in this paper. The asymptotic channel estimation MSE has
been quantified as a closed-form expression of the percentage
of pilots used for MMSE channel estimation. By analyzing
the statistical properties of the estimated channel coefficients,
we derived the explicit SER and a spectral efficiency lower
bound of communication systems operating with imperfect
CSI. It has been shown through theoretical study that, if the
pilot samples the channel at a rate no less than the Nyquist
rate of the time-varying channel, MMSE channel estimation
at pilot locations or MMSE channel interpolation at non-pilot
locations yield the same MSE. Numerical results indicated
that the imperfect CSI could have significant impacts on
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Fig. 7. The optimum pilot percentage as a function of the normalized Doppler
spread.

system performance, especially at high Doppler spread. The
negative impacts of channel estimation error could be reduced
by carefully choosing the pilot percentage.

APPENDIX

A. Proof of Proposition 1

Performing eigenvalue decomposition of Rhh in (6), we can
rewrite the MSE as

σ2
p,Np

=
1

Np

Np∑
n=1

[
λn −

(
λn +

1

γ0

)−1

λ2
n

]

=
1

Np

Np∑
n=1

(
λn

λnγ0 + 1

)
, (26)

where λn is the n-th eigenvalue of Rhh. Based on Szego’s
Theorem [15], when Np → ∞, (26) can be rewritten as

σ2
p = lim

Np→∞
σ2
p,Np

=
1

2π

∫ π

−π

[
Λ(Ω)

Λ(Ω)γ0 + 1

]
dΩ, (27)

where Λ(Ω) =
∑∞

k=−∞ J0 (2πfD |k|Tp) e
−jkΩ is the discrete-

time Fourier transform (DTFT) of {J0 (2πfD |k|Tp)}k, with
Tp = Ts

δ being the space between two pilot symbols.
The Fourier transform (FT) of the continuous-time function

J0(2πfDt) is [17]

Π(ω) =
2rect( ω

4πfD
)√

(2πfD)
2 − ω2

, (28)

where ω = Ω
Tp

is the analog angular frequency with unit
radians per second. From (28), the DTFT Λ(Ω) can then be
written as

Λ(Ω)=
1

Tp

∞∑
n=−∞

Π

(
ω − n

2π

Tp

)
=

∞∑
n=−∞

2rect(Ω−2πn
2β )√

β2 − (Ω− 2πn)2
,

(29)
where β = 2πfDTp.

Based on the sampling theorem, when δ ≥ 2fDTs, there
is no spectrum aliasing in (29), the DTFT in (29) can be
simplified to

Λ(Ω) =
2rect( Ω

2β )√
β2 − Ω2

, − π ≤ Ω ≤ π. (30)

The MSE in (27) can then be simplified to

σ2
p =

1

2π

∫ β

−β

[
2

2γ0 +
√
β2 − Ω2

]
dΩ (31)

It should be noted that β ≤ π when δ ≥ 2fDTs.
By changing the integration variable Ω = β sin(x), we can

solve the above integral with the following integration

∫ π
2

−π
2

[a+ b cos(x)]
−1

dx =
4 arctan

(√
a−b
a+b

)
√
a2 − b2

, (32)

where the equation is derived by combining [14, eqn.
(2.553.3)] with the identity arctan(jx) = jarctanh(x) for
x ∈ R and j2 = −1. The results in (8) can then be obtained
by applying (32) to (31).

B. Proof of Proposition 2

The Toeplitz matrix, Rdh, is uniquely determined by the
sequence tdh = [t−Np , · · · , t0, · · · , tNp−2]

T , where tk =
ρ(kK+u) = J0

(
2πfDTp|k + u

K |). The temporal interpolation
introduces a time shift, u

KTp, between the sequences tdh
and {J0(2πfD |k|Tp}. A shift in the time domain corresponds
to a phase shift in the frequency domain. Therefore, when
Np → ∞ and δ ≥ α

π , the DTFT of the sequence tdh can be
calculated as

Λdh(Ω) = Λ(Ω)× exp
(
j
u

K
Ω
)
, − π ≤ Ω ≤ π, (33)

where Λ(Ω) is the DTFT of {J0(2πfD |k|Tp} and it is given
in (30).

Based on [15, Lemma 2], Rdh is asymptotically equiv-
alent to a circulant matrix, Cdh = UH

NDdhUN , where
UH

N is the unitary discrete Fourier transform (DFT) matrix
with the (m + 1, n + 1)-th element being (UN )m+1,n+1 =
1√
N
exp
[−j2πmn

N

]
, and Ddh is a diagonal matrix with its

k-th diagonal element being (Ddh)k,k = Λdh

(
k−1
N

)
.

Similarly, the Toeplitz matrix, Rhh, is asymptotically equiv-
alent to a circulant matrix, Chh = UH

NDhhUN , where Dhh

is a diagonal matrix with its k-th diagonal element being
(Dhh)kk = Λ

(
k−1
N

)
, with Λ(Ω) defined in (29).

Based on [16, Theorem 2.1], the error correlation matrix,
Ψee, is asymptotically equivalent to a circulant matrix, Cee =

Chh − Cdh

(
Chh + 1

γ0
INp

)−1

CH
dh = UH

NDeeUN , where

Dee = Dhh − Ddh

(
Dhh + 1

γ0
INp

)−1

DH
dh. It is apparent

that Dee is diagonal given that Dhh and Ddh are diagonal.
Based on Szego’s Theorem, we have

σ2
e =

1

2π

∫ π

−π

[
Λ(Ω)− |Λdh(Ω)|2

Λ(Ω) + 1
γ0

]
df. (34)

Since δ ≥ α
π , there is no spectrum aliasing for Λ(Ω) and

Λdh(Ω) when −π ≤ Ω ≤ π. As a result, it can be easily
seen from (33) that |Λdh(Ω)|2 = |Λ(Ω)|2 when −π ≤ Ω ≤ π.
Therefore (34) can be simplified to (27), and this completes
the proof.
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C. Proof of Proposition 3

Since hp and zp are zero mean Gaussian distributed, the
received vector corresponding to the pilot symbols, yp, is
zero mean Gaussian distributed with auto-correlation matrix
Ryy = E0PRhhP

H + σ2
z INP . From (12), the estimated

channel vector ĥd is a linear transformation of yp, thus ĥd is
zero mean Gaussian distributed with auto-correlation matrix
given by

Rd̂d̂ = Rdh

(
Rhh +

1

γ0
INp

)−1

RH
dh. (35)

Combining (13) with (35) yields Rd̂d̂ = Rhh −Ψee. There-
fore, σ2

ĥ
= limN→∞ 1

N trace(Rd̂d̂) = 1− σ2
e .

D. Proof of Corollary 1

Denote the estimation error vector ed = ĥd − hd. Since
both ĥd and hd are zero-mean Gaussian distributed, ed is
zero-mean Gaussian distributed. The cross-covariance matrix
between ed and ĥd is E(edĥ

H
d ) = 0 by following the

orthogonal principal. Therefore, ed and ĥd are uncorrelated.
The conditional mean can then be calculated as uh|ĥ =

E(hd|ĥd) = ĥd − E(ed|ĥd) = ĥd. The auto-covariance
matrix is, E[(hd − uh|ĥ)(hd − uh|ĥ)

H ] = E[(hd − ĥd)(hd −
ĥd)

H ] = Ψee. The conditional variance is thus σ2
h|ĥ =

limN→∞ 1
N trace (Ψee) = σ2

e .

E. Proof of Corollary 2

Since h conditioned on ĥ is Gaussian distributed, it is
straightforward that y =

√
E0hx + z conditioned on ĥ and

x is Gaussian distributed. The conditional mean and variance
can be directly calculated by using the result from Corollary
1.

F. Proof of Proposition 4

Given the estimated CSI ĥ and the transmitted symbol x,
the conditional SER equals to the probability that the decision
variable μ is outside of the decision region of x. Since μ
conditioned on ĥ and x is Gaussian distributed, the conditional
error probability can be written as [7] and [18]

P (E|ĥ) = 1

π

∫ π− π
M

0

exp

⎧⎨
⎩−

|uμ|x,ĥ|2 sin2( π
M )

σ2
u|x,ĥ sin

2(φ)

⎫⎬
⎭ dφ (36)

Substituting the values of uμ|x,ĥ and σ2
u|x,ĥ from (17) into

(36) yields

P (E|ĥ) = 1

π

∫ π− π
M

0

exp

[
− |ĥ|2 sin2( π

M )

(σ2
e +

1
γ0
) sin2(φ)

]
dφ (37)

The unconditional error probability P (E) = E[P (E|ĥ)] can
then be calculated by

P (E) =
1

π

∫ π− π
M

0

∫ +∞

0

exp

[
− μ sin2( π

M
)

(σ2
e + 1

γ0
) sin2(μ)

]
p|ĥ|2(μ)dμdφ,

where p|ĥ|2(μ) is the pdf of |ĥ|2. From Proposition 3, ĥ ∼
CN (0, 1−σ2

e), thus |ĥ|2 is an exponentially distributed random
variable with mean 1 − σ2

e . Performing change of variable
v = μ

1−σ2
e

and integrating with respect to v results in (18).

G. Proof of Lemma 1

The conditional mutual information is defined as

I(y;x|ĥ) = Ex,y

[
log p(y|x, ĥ)

]
− Ex,y

[
log p(y|ĥ)

]
. (38)

From Corollary 2, p(y|x, ĥ) is a Gaussian pdf with the
conditional mean and variance given in (14). Then

Ex,y

[
log p(y|x, ĥ)

]
= Ex

[
log

1

π(E0σ2
e |x|2 + σ2

z)e

]
. (39)

It can be easily shown that (39) is convex in |x|2. Based on
Jensen’s inequality, we have

Ex

[
log

1

π(E0σ2
e |x|2 + σ2

z)e

]
≥ log

1

π(E0σ2
e + σ2

z)e
, (40)

where E(|x|2) = 1 is used in the above inequality.
Define

Ilow(y;x|ĥ) = log
1

π(E0σ2
e + σ2

z)e
+ E

[
log

1

p(y|ĥd)

]
. (41)

Thus Ilow(y;x|ĥ) ≤ I(y;x|ĥ).
The second term in (41) is the conditional differential

entropy of y given ĥ. Conditioned on ĥ, the conditional mean
and variance of y are given by

uy|ĥ = 0, (42a)

σ2
y|ĥ = E0(|ĥ|2 + σ2

e) + σ2
z . (42b)

Given variance σ2
y|ĥ, it is well known that the entropy of y|ĥ

is maximized if y|ĥ ∼ N
(
0, σ2

y|ĥ

)
. In this case,

maxE

[
log

1

p(y|ĥd)

]
= log(E0|ĥ|2 + E0σ

2
e + σ2

z) (43)

Thus, (41) can be maximized by

Clow(ĥ) = max Ilow(y;x|ĥ) = log

(
1 + |ĥ|2 1

σ2
e +

1
γ0

)
.

(44)
Since Ilow(y;x|ĥ) ≤ I(y;x|ĥ), we have Clow(ĥ) ≤ C(ĥ).

H. Proof of Proposition 5

Based on (19) and (20), a lower bound on the effective
spectral efficiency can be obtained as

ηlow = (1 − δ)

∫ +∞

0

log

(
1 + x

1

σ2
e + 1

γ0

)
p|ĥ|2(x)dx, (45)

where p|ĥ|2(x) is the pdf of the exponentially distributed

random variable x = |ĥ|2 with mean 1− σ2
e . With the change

of integration variable v = x
1−σ2

e
, (45) can be alternatively

represented as

η = (1− δ)

∫ ∞

0

exp(−v) log

(
1 + v

1− σ2
e

σ2
e +

1
γ0

)
dv (46)

Solving the above integral based on the definition of the
incomplete Gamma function yields (21).
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