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Abstract—A low complexity detection scheme is proposed in this
paper for under-determined multiple-input multiple-output (UD-
MIMO) wireless communication system that employs N transmit
antennas and M < N receive antennas. The proposed scheme
combines a simplified parallel interference cancelation (S-PIC)
with the block decision feedback equalization (BDFE) algorithm.
To account for the extra (N −M)-dimension in the transmitted
signal, the UD-MIMO system is partitioned into two subsystems,
one with (N −M) transmit antennas and the other one with M
transmit antennas. The interference from the first subsystem to
the second one is canceled in parallel and BDFE is performed
over the second subsystem. Unlike conventional PIC methods
that exhaustively search all the Q(N−M) sequences in the first
subsystem, with Q being the constellation size, the proposed
scheme explores only a small number of candidate sequences in
the first subsystem, thus achieves significant complexity reduction.
Two new candidate sequence selection methods are proposed.
In the first iteration, the candidate sequences used for PIC are
selected by exploring the statistical properties of the received
signals. In the second iteration and beyond, the set containing the
candidate sequences is constructed by utilizing the soft information
generated from the previous iteration. The proposed scheme
provides a balanced tradeoff between computational complexity
and bit error rate (BER) performance.

Index Terms—Under-determined multiple-input multiple-
output (UD-MIMO), turbo detection, parallel interference
cancelation (PIC), block decision feedback equalization (BDFE),
wireless communication.

I. INTRODUCTION

Consider a multiple-input multiple-output (MIMO) commu-
nication system that employs N transmit antennas and M
receive antennas. A MIMO system is symmetric if N = M
or over-determined if N < M , and they are referred to as
conventional MIMO systems in this paper. In many practical
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applications, there are more transmit antennas available than
receive antennas, and such systems with spatial multiplexing
are referred to as under-determined (UD) MIMO or overloaded
MIMO systems. For example, in the downlink of cellular
systems, the base station often has a large number of transmit
antennas while the mobile station is usually equipped with a
small number of receive antennas. In the uplink multi-user
transmission, when the number of users exceeds the number
of receive antenna at the base station, the system can also be
treated as UD-MIMO. In vehicular infotainment systems [1],
more antennas can be installed in the roadside infrastructure
than those on the vehicles, forming a UD-MIMO system
that can achieve a higher data rate than conventional MIMO
systems. The constantly increasing demand for high data rate
communications over scarce spectrum resources motivates the
development of communication systems that can effectively
exploit the multiplexing gains of UD-MIMO systems.

Similar to a conventional MIMO system, the optimal de-
tection in a UD-MIMO system uses the maximum likelihood
(ML) or maximum a posteriori probability (MAP) detection
that performs an exhaustive search over all the possible QN

transmitted vectors, where Q is the modulation constellation
size. However, the computational complexity of the ML and
MAP detectors grows exponentially with Q and N , making
them prohibitive for practical implementations when Q or N
is large. Therefore, the optimal detectors are only used for small
UD-MIMO systems [2], [3]. Many sub-optimal solutions orig-
inally developed for conventional MIMO systems are recently
extended to UD-MIMO systems. For example, the recursive
Tabu search (RTS) algorithm [4], [5] has been applied to large
UD-MIMO systems in [6], where a random initial vector is
used as a starting point to perform heuristic local search of
a tree structure. Alternatively, the sphere decoding (SD)-based
algorithms [7], [8] have been applied to UD-MIMO by different
approaches, such as the slab SD [9], [10], the generalized SD
(GSD) [11]–[15], the center-shifting K-best algorithm [16],
the λ-GSD [17], and the two-stage LSD [18]. Most SD-based
algorithms have to combat the problem that the channel Gram
matrix is rank-deficient and the initial estimate cannot be
obtained directly. Other low-complexity MIMO detectors, such
as the ordered successive interference cancelation (OSIC) or the
vertical Bell laboratories layered space-time (V-BLAST) [19],
also suffer from the rank-deficiency problem when applied to
UD-MIMO systems [20], [21].

Three remedies are found in the literature to overcome the
rank-deficiency problem in UD-MIMO detections. One is to
partition the UD-MIMO system into QD parallel symmetric
subsystems [11], where D = N − M is the difference in
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transmit-receive antenna numbers. This partitioning usually
requires exhaustive search over the QD dimensions [11], and
it suffers from high complexity when D is large. Alternatively,
a 2-layered or multi-layered partitioning is applied to the QR-
decomposed channel matrix in [12] or [13], which leads to a
2-stage or multi-depth SD. The second remedy is to modify
the Gram matrix with diagonal loading [14], [16], [18] such
that the matrix can be inverted to yield the initial estimates.
The diagonal loading used in [14], [16] results in a biased
estimation and requires center shifting [16] if the K-best
algorithm is used; while our recent work [18] modifies the
loading and the conventional list sphere decoding (LSD) to
achieve good performance and low complexity simultaneously.
The third remedy to the rank-deficiency problem is to transform
the channel matrix directly into full rank by either adding a
λ loading [17] or by oversampling the receiver with offset
transmission to create additional “virtual” receiver elements that
resemble the conventional MIMO channel matrix [20].

This paper proposes a low-complexity iterative algorithm
for UD-MIMO detection, which combines a simplified paral-
lel interference cancelation (S-PIC) with soft block decision
feedback equalization (BDFE) [22]. The proposed S-PIC-BDFE
scheme is based on the generalized parallel interference can-
celation (GPIC) scheme proposed in [23] and partitions the
UD-MIMO system into two subsystems H1 and H2 of sizes
D × M and M × M , respectively, which is the same as in
[11]. However, unlike [11] and [23] that perform exhaustive
search over all the QD possible sequences corresponding to
H1, the proposed scheme only selects a small number of the
most probable candidate sequences from subsystem H1, and
they are treated as interference to the symmetrical subsystem
H2. After parallel cancelation of all the interferences, multiple
subsystems with channel matrix H2 are created and are detected
in parallel by the BDFE algorithm [22]. The performance of the
UD-MIMO system improves as soft information is exchanged
between the UD-MIMO detector and channel decoder through
iterations.

One of the main contributions of the proposed scheme is
the S-PIC, which achieves significant complexity reduction by
selecting a small number of candidate sequences from subsys-
tem H1. We propose two different candidate selection methods,
one for the first iteration without a priori information, another
for the second and later iterations when log-likelihood ratios
(LLRs) from the previous iteration are available. Both selection
methods ensure that the truly transmitted sequence is included
in the candidate sequence set with a very high probability. As
a result, the performance of the S-PIC is almost identical to
PIC with exhaustive search, but with a much lower complexity.
Our PIC approach differs from [23], [24] in that a reduced
set of candidates are considered for interference cancelation
rather than the whole set of candidates; our PIC approach also
differs from [25] in that complete cancelation of interference
is used for all iterations rather than the partial cancelation in
[25]. We demonstrate that the PIC approach exhibits better
BER performance than OSIC for UD-MIMO. The utilization
of BDFE instead of the zero-forcing or minimum mean square
error (MMSE) detector for subsystem H2 also improves the
performance considerably. A brief analysis on computational

complexity is also provided.
Common notations used in this paper are listed here.

CN (µ, σ2) denotes the complex Gaussian distribution with
mean µ and variance σ2; FX(x) denotes the cumulative distri-
bution function (CDF) of the random variable X; P (x) denotes
the probability of event x; CM×N and RM×N denote the
M ×N dimensional complex- and real-number space, respec-
tively; E[·] is the expectation operator; IM denotes the identity
matrix of size M ; det(·) is the matrix determinant operator;
and Diag(a1, · · · , am, · · · , aM ) denotes a diagonal matrix with
the m-th diagonal element being am. The superscripts ()T and
()H denote the matrix transpose and the matrix Hermitian,
respectively.

II. SYSTEM MODEL AND TURBO DETECTION

A UD-MIMO system with N transmit antennas and M
receive antennas is depicted in Fig. 1, where N > M
and hmn ∼ CN (0, 1) is the baseband equivalent channel
coefficient between the n-th transmit antenna and the m-
th receive antenna. The N independent bit streams {an}Nn=1

are encoded by channel encoders to generate the coded bit
streams {bn}Nn=1. The coded bit streams are interleaved by
pseudo-random interleavers to obtain the interleaved bit streams
cn = Π(bn), for n = 1 · · ·N , where Π(·) is the interleaving
operator. Then every P bits are mapped to a symbol in the
modulation constellation set S that has a cardinality Q = 2P .
The modulated symbol vectors, s = [s1, · · · , sN ]T ∈ SN×1,
are transmitted by N antennas through a channel with flat
fading and additive white Gaussian noise (AWGN). The total
energy of all the N transmitted symbols is Es = E[sHs].

Denote the M × N channel matrix as H with hmn on
the m-th row and the n-th column of H, and the complex
AWGN vector as v = [v1, · · · , vM ]T ∈ CM×1 with vm ∼
CN (0, σ2

0). Denote the received baseband-equivalent signal as
y = [y1, · · · , yM ]T ∈ CM×1, then we have the UD-MIMO
system model

y = Hs+ v. (1)

It is assumed that the channel matrix H is known at the receiver.
For the receiver, the optimum UD-MIMO detector may

employ the turbo detection similar to that in conventional
MIMO receivers, also shown in Fig. 1, where a MIMO soft-
symbol detector and N soft channel decoders are connected
by de-interleavers and interleavers. Soft information is itera-
tively exchanged between the soft-symbol detector and the soft
channel decoders. The MIMO symbol detector generates the
soft a posteriori LLRs Ln,p

D1 for the coded bit cn,p, where
the superscripts p and n denote the p-th bit from the n-
th transmit antenna. The extrinsic LLRs are calculated as
Ln,p
E1 = Ln,p

D1 − Ln,p
A1 , where Ln,p

A1 is the soft a priori LLR
for the bit cn,p. The extrinsic LLR Ln,p

E1 is deinterleaved to
yield the soft a priori LLR Ln,p

A2 for the channel decoder, that
is, Ln,p

A2 = Π−1(Ln,p
E1 ), where Π−1(·) is the deinterleaving

operator. Using Ln,p
A2 as the input, the channel decoder generates

the soft a posteriori LLR Ln,p
D2 and the extrinsic LLR Ln,p

E2 .
Then Ln,p

E2 is interleaved to generate the soft a priori LLR
Ln,p
A1 = Π(Ln,p

E2 ), which is used as the input to the soft symbol
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Fig. 1. UD-MIMO transceiver with turbo iterative detection, where Π and Π−1 denote the interleaver and the deinterleaver, respectively.

detector for the next iteration. For the first iteration, Ln,p
A1 = 0

since there is no a priori information.
In the soft MIMO symbol detector, the soft a posteriori LLR

Ln,p
D1 for bit cn,p is calculated as

Ln,p
D1 = ln

∑
s∈Sn,p,0

exp
(
− 1

σ2
0
||y −Hs||2

)
P (s)∑

s∈Sn,p,1
exp

(
− 1

σ2
0
||y −Hs||2

)
P (s)

, (2)

where Sn,p,b contains all the possible transmitted vectors in
the set SN×1 with cn,p = b for b = 0, 1 and P (s) denotes
the a priori probability for the vector s. The optimal solution
to (2) requires an exhaustive search over the whole set SN×1,
resulting in a complexity on the order of O(QN ). The expo-
nentially grown complexity of the optimal detector makes it
difficult to implement in practical systems, even for moderate
Q and N . Although many sub-optimal solutions based on
sphere decoding are developed for UD-MIMO systems, the
computational complexity of those algorithms is still pretty
high, especially when N −M is large.

III. SIMPLIFIED PARALLEL INTERFERENCE CANCELATION
WITH BDFE

A S-PIC scheme is proposed for iterative UD-MIMO detec-
tion, which combines a low-complexity PIC with BDFE, as
shown in Fig. 2.
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ŝ
(j)
2

s1

L
n,p

A1

L
n,p

A2

Fig. 2. Iterative PIC-BDFE detector for UD-MIMO receiver, where the
sym2bit block contains soft symbol to bit LLR calculation and de-interleaver,
and the bit2sym block contains interleaver and bit LLR to soft symbol mapping.

In the first iteration, the columns of the channel matrix are
sorted in an ascending order based on the Frobenius norms
of the rows of the pseudo-inverse of H [23], as ∥

(
H†)

k
∥,

where the superscript ()† denotes matrix pseudo-inverse, the
subscript (H)k represents the k-th row of the matrix H, and
∥·∥ is the Frobenius norm of a vector. The channel matrix with

the ordered columns is then partitioned into two matrices as
H1 = [hi1 , · · · ,hiD ] ∈ CM×D and H2 = [hiD+1 , · · · ,hiN ] ∈
CM×M , where D = N−M , the ordered index set {i1, · · · , iN}
are a permutation of {1, · · · , N} and hin is the in-th column
of H.

After the partition, the UD-MIMO system in (1) is equiva-
lently represented as the superposition of a D×M system and
an M ×M system as

y = H1s1 +H2s2 + v, (3)

where s1 = [si1 , · · · , siD ]T ∈ SD×1 and s2 =
[siD+1

, · · · , siN ]T ∈ SM×1. Note that even though H2 is a
equivalent channel matrix of a symmetric MIMO, H1 may still
be under-determined depending on D and M . The partitioning
is the same as that in [11], [21].

The number of possible s1 vectors is QD. Denote the QD

possible values of s1 as {s(j)1 }Q
D

j=1. In the proposed method,
only a small number of the most probable candidates of s1
are selected to form a candidate set, denoted as

{
s
(j)
1 |j ∈ J

}
,

where the set J with cardinality J is the candidate index set.
Each particular sequence s

(j)
1 is treated as an interference to the

symmetrical subsystem H2s
(j)
2 and can be canceled to yield an

equivalent system

yj = y −H1s
(j)
1 = H2s

(j)
2 + v, j ∈ J . (4)

The parallel cancelation of all the interferences results in
multiple subsystems in the form of (4). These symmetric
subsystems are detected in parallel by the BDFE algorithm [22]
to yield the corresponding ŝ

(j)
2 . Since no a priori information is

available at the first iteration, the s
(j)
1 selection and the BDFE

detection for the first iteration are different from those for the
second iteration and beyond. The following subsections will
present the details of the BDFE detection and candidate set
selection for the various iterations.

A. The First Iteration

The BDFE performs a sequence-based detection for the
symmetrical subsystem (4) through two block filters [22]: a
feedforward filter, W ∈ CM×M , and a strict upper triangular
feedback filter with zero diagonal elements, B ∈ CM×M . In
the first iteration, no a priori information is available for either
s1 or s2. Therefore, the BDFE filters derived by following the



0018-9545 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVT.2014.2298232, IEEE Transactions on Vehicular Technology

4

MMSE criterion are the same for all the J parallel subsystems.
That is

B = U− IM ,

W = UHH
2

(
H2H

H
2 + σ2

0IM
)−1

(5)

where U ∈ CM×M is an upper triangular matrix with unit
diagonal elements. The matrix U is obtained from the Cholesky
decomposition as

1

Es
IM +

1

σ2
0

HH
2 H2 = UH∆U,

where σ2
0 is the noise variance and ∆ ∈ RM×M is a diagonal

matrix. It is clear that the two filters defined in (5) depend only
on the channel matrix H2.

The j-th BDFE detector outputs the soft symbol sequence
ŝ
(j)
2 . The m-th element of ŝ(j)2 is the a posteriori mean of the

corresponding symbol, calculated as

ŝ
(j)
iD+m

=
∑Q

k=1 χkP
(
siD+m

= χk|yj

)
,

for m = 1, 2, · · · ,M, (6)

where χk ∈ S is a Q-ary modulation symbol, and
P
(
siD+m = χk|yj

)
is the a posteriori probability (APP) at the

output of the j-th BDFE. The adoption of the a posteriori soft
decision reduces the effects of error propagation, which leads
to better performance than hard decisions.

To compute (6), we note that the output of the feedfoward
filter, denoted as rj = [r

(j)
1 , · · · , r(j)M ]T , can be computed from

(5) as

rj = Wyj = Gs
(j)
2 + ej , (7)

where G = B+IM is the equivalent channel matrix, and ej =

[e
(j)
1 , · · · , e(j)M ]T is the noise sample vector of the equivalent

system G. The equivalent noise vector ej has zero mean, and
its covariance matrix is Φee = ∆−1 = Diag[σ2

1 , · · · , σ2
M ],

where 1/σ2
m is the m-th diagonal element of ∆. Based on the

assumption that ej is complex Gaussian distributed, we have

P
(
siD+m |rj

)
=
P (χk)

Am
exp

[
− 1

σ2
m

∣∣∣ρ(j)m (siD+m)
∣∣∣2] (8)

where P (χk) = 1/Q for the first iteration, Am is a normaliza-
tion constant, and the metric ρ

(j)
m (siD+m

) is calculated as

ρ(j)m (siD+m
) = r(j)m − gm,msiD+m

−
M∑

l=m+1

gm,lŝ
(j)
iD+l

, (9)

where gm,n is the (m,n)-th element of G.
The APP in (8) is used to replace P

(
siD+m = χk|yj

)
in

(6) for computing the soft decisions. Once the tentative soft

decision vectors
{
ŝ
(j)
2

}J

j=1
are obtained for all J parallel

subsystems, they are combined with the corresponding s
(j)
1 to

yield J candidate estimates of the transmitted s. The minimum
Euclidean distance (MED) rule is then used to choose the best
estimate out of the J candidates as

j0 = argmin
j∈J

∥y −H1s
(j)
1 −H2ŝ

(j)
2 ∥2, (10)

where J is the candidate set of the index j. The solution to

(10) yields ŝ(j0) =
[
s
(j0)
1 ; ŝ

(j0)
2

]
∈ CN×1, where [a;b] denotes

the operator that stacks the two column vectors a and b into a
single column vector. In the vector ŝ(j0), the first D elements
are hard decisions, and the last M symbols are soft decisions.
The APP of ŝ

(j0)
2 has been calculated in (8). The APP for the

n-th symbol in s
(j0)
1 can be calculated as

P (sin |y) =
P (sin )
Ain

exp
[
− 1

σ2
0
∥y −Hŝ

(j0)
in

− hinsin∥2
]
,

in = i1 · · · iD, (11)

where ŝ
(j0)
in

is obtained by replacing the n-th element of ŝ(j0)

with zero. The extrinsic bit LLR can then be calculated from
the symbol APP as in [22], and it is used as the a priori LLR
at the input of the channel decoder .

The selection of the candidate index set J is critical to
the complexity-performance tradeoff of the proposed scheme.
We now propose a new algorithm to reduce the size of the
candidate set J while keeping the probability of missing the
true sequence low. During the first iteration, there is no a priori
information available. We thus propose to use the norm of
the output of the feedforward filter, ∥rj∥2, as a metric for
the candidate set selection. That is, if Ml ≤ ∥rj∥2 ≤ Mu,
where the lower and upper bounds Ml and Mu are dynamically
calculated based on the channel condition, then j ∈ J ,
otherwise j /∈ J . The bounds Ml and Mu are calculated to
ensure that the true sequence is in J with a high probability.
Therefore, the calculation of Ml and Mu requires the statistical
properties of ∥rj∥2 =

∑M
m=1 |r

(j)
m |2, where r

(j)
m is the m-th

element of the vector rj .
Conditioned on the upper triangular equivalent channel ma-

trix G and the actual transmitted sequence s(j) = s, |r(j)m |2 can
be approximated by a non-central Chi-squared random variable
with two degrees of freedom. Denote the random variable as
Xm. The conditional CDF of Xm can be expressed as [26]

FXm(xm|s,G) = 1−Q1

(√
Em

σm
,

√
xm

σm

)
, (12)

where Em , |gms2|2 = |
∑M

l=m gm,lsiD+l
|2, and gm is the m-

th row of the matrix G. The function Q1(a, b) is the marcum-Q
function with order one, defined as

Q1(a, b) =

∫ ∞

b

x exp

(
−x2 + a2

2

)
I0(ax)dx, (13)

where I0(x) is the modified Bessel function of the first kind
with order zero.

The probability that Xm falls between the interval
[R

(l)
m , R

(u)
m ] is

P (R(l)
m < Xm ≤ R(u)

m ) = FXm(R(u)
m |s,G)− FXm(R(l)

m |s,G).
(14)

Denote

FXm(R(l)
m |s,G) = kl, (15a)

FXm
(R(u)

m |s,G) = ku, (15b)

where 0 ≤ kl < ku ≤ 1. To ensure that the transmitted
sequence falls in the set J with a high probability, kl is
chosen to be close to zero while ku is close to one. For
example, kl = 0.01 and ku = 0.99 yields a probability of
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ku−kl = 0.98. Given kl, ku, and Em, the values R(l)
m and R

(u)
m

can be calculated from (12) and (15). However, the value of Em

depends on the transmitted vector x, which is not available at
the receiver before detection. We propose to solve this problem
by using an approximated upper bound and lower bound of Em.
The approximated upper bound is

Em ≤
M∑

l=m

|gm,l|2
M∑

l=m

|siD+l
|2

≈ (M −m+ 1)E0∥gm∥2 , E(u)
m , (16)

where E0 = E[|sD+l|2] is used to approximate |siD+l
|2.

The lower bound of Em is estimated as

Em ≥ E0 , E(l)
m . (17)

by noting that gm,m = 1.

The values of R
(l)
m and R

(u)
m can then be solved from (15)

by using E
(u)
m and E

(l)
m , respectively. Once R

(l)
m and R

(u)
m are

calculated, the overall upper and lower bounds of ||rj ||2 can
be obtained as

Mu =

M∑
m=1

R(u)
m , (18)

Ml =
M∑

m=1

R(l)
m . (19)

The approximation in (16) can achieve a good performance
for constant-modulus modulation schemes, such as phase shift
keying, because all the symbols have the same average power
E0. On the other hand, for modulation schemes with non-
constant amplitude, some performance loss may occur. In this
case, the maximum symbol energy Emax can be used to replace
E0 in E

(u)
m , and the minimum symbol energy Emin is used

to replace E0 in E
(l)
m . Such a mechanism can achieve good

performance with a slightly higher complexity.
The candidate set J in the first iteration is constructed by

choosing sequences with ∥rj∥2 ∈ [Ml,Mu] as its members.
Such a scheme yields a set with cardinality far less than
QD; thus the complexity is reduced significantly compared to
GPIC, which exhaustively searches over all the QD possible
sequences of s1. At the mean time, the calculation of Mu and
Ml ensures that the transmitted sequence will fall in J with a
high probability. During the first iteration, the same feedforward
filter is used for all the subsystems and the bound calculation.
The evaluation of the Marcum-Q function can be performed by
using a look-up table to reduce the complexity.

The first iteration of the proposed S-PIC-BDFE scheme is
summarized in Table I.

B. Second Iteration and Beyond

Since the a priori information is available for the second
iteration and beyond, the candidate set for s1 is updated
based on the a priori LLR Ln,p

A1 at the input of the UD-
MIMO detector. The a priori probability for coded bits cn,p

is calculated as

P (cn,p = 0) =
exp (Ln,p

A1 )

1 + exp (Ln,p
A1 )

,

P (cn,p = 1) =
1

1 + exp (Ln,p
A1 )

. (20)

Assume that the constellation symbol χk is mapped to the bit
pattern [bk,1, · · · , bk,P ]T , then the symbol probability P (sn =
χk) is calculated from (20) as

logP (sn = χk) =
∑P

i=1 logP (cn,p = bk,i),

for k = 1, · · · , Q. (21)

Let a possible transmitted symbol sequence of subsystem
H1 be s

(j)
1 = [s

(j)
i1

, · · · , s(j)iD
]T , and all elements of s

(j)
1

are independent. Then the probability of s1 = s
(j)
1 can be

calculated from (21) as

logP (s1 = s
(j)
1 ) =

∑D
d=1 logP (sd = s

(j)
id

),

for j = 1, · · · , QD. (22)

Ideally, we can calculate all QD probabilities in (22) and
select the sequences with the highest probabilities as the
candidate set. However, this involves exhaustive search of QD

probabilities, thus leading to high computational complexity. To
further reduce complexity, we propose a per-antenna selection
approach by reducing the number of candidate symbols on each
antenna. That is, the a priori symbol probabilities calculated
from (21) for antenna n are sorted in a descending order,
and the K symbols with the highest probabilities are chosen
as the candidate symbols. Only the K candidate symbols on
each antenna are used for the calculation of the sequence a
priori probability in (22), which yields J = KD candidate
sequences. The value of K ∈ [1, Q] can be chosen to balance
the complexity-performance tradeoff.

After the candidate set is selected, the PIC in (4) is used
again to yield J parallel symmetric subsystems. Then the BDFE
algorithm is used to detect the J sequences s

(j)
2 in parallel.

Since the a priori information is available from the previous
iteration, the inputs to the BDFE filters, as well as the filter
coefficients, are different from those in the first iteration. With
the aid of the a priori LLR Ln,p

A1 , the a priori mean and variance
of the symbol at the iD+m-th antenna is calculated as

s̄iD+m
=

Q∑
k=1

χkP (siD+m
= χk),

σ2
iD+m

=

Q∑
k=1

|χk − s̄iD+m
|2P (siD+m

= χk), (23)

where m = 1, · · · ,M , and P (siD+m
= χk) is obtained from

(20) and (21).

For the j-th symmetric subsystem, the BDFE filter matrices
for the detection of the (D +m)-th symbol are

Bm = Um − IM ,

Wm = UmΦmHH
2

(
H2ΦmHH

2 + σ2
0IM

)−1
, (24)

where Φm is the a priori covariance matrix for the equalization
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TABLE I
THE S-PIC-BDFE ALGORITHM FOR THE FIRST ITERATION

Parameters thresholds 0 ≤ kl < ku ≤ 1, constellation symbols χk for k = 1, · · · , Q.
Inputs the channel matrix H, noise variance σ2

0 , and the received signal y
Step 1 Channel ordering and partitioning

1.1 compute the Frobenius norms ||(H†)k||;
1.2 order the norms in an ascending order to yield the ordered index set {in}Nn=1;
1.3 partition H1 = [hi1 , · · · ,hiD ] and H2 = [hiD+1

, · · · ,hiN ];
Step 2 BDFE filter design

2.1 compute filters B and W as in (5). Set G = B+ IM ;
2.2 compute column vector norms ||gm||2 for m = 1, · · · ,M .

Step 3 Bounds calculations for ||rj ||2

3.1 compute E
(u)
m and E

(l)
m with (16) and (17), respectively;

3.2 compute R
(u)
m and R

(l)
m by (15a) and (15b), respectively;

3.3 compute Mu and Ml by (18) and (19), respectively;
Step 4 PIC and BDFE detection

4.1 for each s
(j)
1 , compute s

(j)
2 and rj according to (4) and (7), and compute the norm

of rj ;
4.2 if Ml ≤ ||rj ||2 ≤ Mu, then choose the j and go to Step 4.3, otherwise return to

Step 4.1;
4.3 for j ∈ J , compute the APP by (8) and (9); then compute the soft decision for ŝ(j)2

by (6);
Step 5 j0 selection and APP calculation

5.1 compute MED according to (10) for each j ∈ J ;
5.2 find j0 with the minimum MED;
5.3 compute the APP for s(j0)1 by (11).

of s(j)iD+m
, and it is

Φm = Diag{σ2
iD+1

, · · · , σ2
iD+m−1

, 1, σ2
iD+m+1

, · · · , σ2
iN }.

The matrix Um is calculated from the Cholesky decomposition

1

Es
Φ−1

m +
1

σ2
0

HH
2 H2 = UH

m∆Um.

which is also related to Φm. It is noted that, although the filter
matrices Bm and Wm are different for each m, they are the
same for all j, since the variance calculated from (23) is the
same for all the J parallel subsystems.

The output of the j-th subsystem is

r(j)m = Wm(yj −H2s̄2m) = Gm(s
(j)
2 − s̄2m) + e(j)m , (25)

where e
(j)
m is the error vector of the equivalent system Gm =

Bm + IM , and s̄2m is the a priori mean vector with the m-th
element being zero. That is

s̄2m = [s̄iD+1
, · · · , s̄iD+m−1

, 0, s̄iD+m+1
, · · · , s̄iN ]T ,

which is the same for all j since the mean calculated from (23)
is the same for all the J parallel subsystems. The soft decision
at the output of the BDFE filter can then be calculated in a
similar manner as (6) and (8).

From (25) it is observed that the equivalent system for the
second iteration and beyond is more complicated than that of
the first iteration. During the APP calculation in (8) for the
second or later iterations, the metric ρ

(j)
m (siD+m

) is calculated

as

ρ(j)m (siD+m) = r(m,j)
m − gm,msiD+m

−
M∑

l=m+1

gm,l(ŝ
(j)
iD+l

− s̄iD+l
), (26)

where r
(m,j)
m is the m-th element of r

(j)
m and ŝ

(j)
i is the i-th

soft decision of the j-th subsystem of the current iteration.
The UD-MIMO detection algorithm for the second iteration

and beyond is summarized in Table II.

IV. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed S-PIC-BDFE
scheme is analyzed and compared to that of the conventional
GPIC-GSIC-BDFE scheme [23]. Several steps are common to
both algorithms, such as channel ordering and partition, and
LLR calculation in the channel decoder. The channel ordering
and partition are performed only once and its complexity
is relatively low; thus we omit them in the analysis. The
complexity of the LLR calculation is also small compared
to the other steps, especially if we use the MAX-log-MAP
approximation; thus it is also ignored in our analysis. Hence,
the complexity analysis focuses on the number of complex
multiplications in the symbol detection part of the algorithms.

For the first iteration, since the BDFE filter matrices W
and B are the same for all the J parallel subsystems and all
symbols, they are calculated only once and the complexity is
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TABLE II
THE S-PIC-BDFE ALGORITHM FOR THE SECOND ITERATION AND BEYOND

Parameters number of candidates per transmit antenna K < Q, constellation symbols χk for
k = 1, · · · , Q.

Inputs LLR Ln,p
A1 , channel partition [H1,H2], noise variance σ2

0 , and the received signal y
Step 1 Candidate set selection

1.1 compute the a priori probability for each symbol sid = χk, for d = 1 : D and
k = 1 : Q

1.2 for each d, pick the K symbols with the largest a priori probabilities
1.3 form the candidate set with the J = KD selected symbols

Step 2 BDFE filter design
2.1 compute symbol mean and variance from the LLR input by (23)
2.2 compute variance matrix Φm and upper triangular matrix Um

2.3 compute filters Bm and Wm as in (24). Set Gm = Bm + IM ;
Step 3 PIC and BDFE detection

3.1 for j = 1 : J , compute yj by (4) and rj by (25),
3.2 compute the APP by (8) and (26);
3.3 compute the soft decision for s(j)2 by (6);

Step 4 j0 selection and APP calculation — the same as Step 5 of the first iteration in Table
I.

negligible. Thus their complexity are not taken into account.
For the proposed algorithm, the average number of complex
multiplications can be written as

NCM = JNsys +Nbound +Nnorm, (27)

where J denotes the size of the candidate set, Nsys denotes the
number of complex multiplications of detecting a subsystem,
Nbound contains the operations used for the calculation of the
bounds of ∥rj∥2 during the first iteration, and Nnorm contains
the calculation of ||rj ||2 for all the subsystems. The average
number of complex multiplications incurred by the calculation
of ||rj ||2 = ||W(y−H1s

(j)
1 )||2 is Nnorm = QD(DM +M2).

The computation of the bounds of ||rj ||2 involves three
operations, the calculation of the CDF in (12), the calculation
of the bounds in (18) and (19), and the norm calculation in (16).
The CDF calculation can be performed with a two-dimensional
lookup table, and the actual bounds calculations in (18) and
(19) require only a small amount of multiplications. These two
operations involve only negligible amount of complexity. Thus
the complexity is mainly contributed by the norm calculation.
Since G is upper-triangular, Nbounds =

M2+M
2 .

The number of complex multiplications of detecting a sub-
system, Nsys, is obtained as follows. Only the feedback filter
is used in the detection for each subsystem. With (8) and (9),
and considering the upper-triangular structure of the matrix G,
(M − m + 1)Q complex multiplications are required for the
calculation of the component siD+m . In order to obtain the
a posteriori probability in (8), three real multiplications are
required and they are counted as one complex multiplication.
The Euclidean distance calculation in (10) incurs M2 complex
multiplications. Therefore, the detection of one subsystem
requires

∑M
m=1(M − m + 2)Q + M2 = M(M+3)

2 Q + M2

complex multiplications.

Based on the above analysis, (27) can be written as

NCM ≃ J

(
M(M + 3)

2
Q+M2

)
+QD(DM +M2)

+
M2 +M

2
. (28)

The parameter J can be estimated by counting the number of
s
(j)
1 that satisfy

r21 ≤ ||rj ||2 ≤ r22, (29)

where r1 =
√
Ml, r2 =

√
Mu are the bounds computed

according to Table I. Eqn. (29) can be alternatively expressed
as

r21 ≤ ||y0 −H0s
(j)
1 ||2 ≤ r22. (30)

where y0 = Wy is the output of the feedforward filter,
and H0 = WH1 is the equivalent channel matrix after the
feedforward filter.

The value of J can thus be identified by finding the number
of vectors s

(j)
1 that lie within the hyper spherical shell defined

by (30). According to [27], for an infinite set, the number of
vectors that lie within a hyper-sphere with radius r can be
approximated by

Jr ≃ Vr

Vbasis
, (31)

where Vr is the volume of a hyper-sphere with radius r, and
Vbasis is the volume of the fundamental region of the set under
consideration. For a complex set with order M , the volume of
a hyper-sphere with radius r is

Vr =
πMr2M

M !
. (32)

The volume of the fundamental region of a real-valued set
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is [28]

Vbasis =
√
det(ΛTΛ), (33)

where the column vectors of the matrix Λ form the bases
of the set. Since the equivalent channel matrix H0 is of
complex-valued, we convert it into an equivalent real-valued
representation R

(
H0s

(j)
1

)
I
(
H0s

(j)
1

)  =

[
R(H0) −I(H0)
I(H0) R(H0)

] [
R(s

(j)
1 )

I(s(j)1 )

]
. (34)

Define H̃0 =

[
R(H0) −I(H0)
I(H0) R(H0)

]
. If D ≤ M , the matrix

G̃ = H̃T
0 H̃0 is of full-rank. Thus we can directly use Λ = H̃0

in (33).
If D > M , the matrix H̃T

0 H̃0 is a rank-deficient matrix,
which cannot be used to describe the property of the funda-
mental region. In this case, we let Λ = H̃T

0 in (33). Since the
transmit vector is normalized to unit energy, a normalization
factor α should be used, and the volume of the fundamental
region is then computed as

Vbasis = α

√
det(H̃0H̃T

0 ). (35)

For example, α = 0.2673 for quadrature phase shift keying
(QPSK) modulation and α = 0.1195 for sixteen quadrature
amplitude modulation (16QAM).

Combining (32) and (35) yields an estimate of J

Ĵ =
Vr2 − Vr1

Vbasis
=

1

αβ

πM (r2M2 − r2M1 )

M !
√
det(H̃0H̃T

0 )
. (36)

where β is an adjustment factor used to account for the fact
that the vectors are from a finite set instead of an infinite
set. It should be noted that the method of complexity analysis
in this section is suitable only for lattice-based modulation.
Substituting (36) into (28) leads to an estimate of the number
of complex multiplications of the proposed algorithm in the
first iteration.

For the conventional GPIC-BDFE scheme, an exhaustive
search over the QD dimensional signal space is required and
the number of the subsystems is always QD. In addition, the
calculation of the bounds are not required for the GPIC-BDFE
scheme. Substituting J with QD in (28) and removing the last
term, we can obtain the number of the complex multiplications
of the GPIC-BDFE scheme.

For the second iteration and beyond, even though the co-
efficient matrices Wm and Bm are still the same for all the
subsystems, they change with respect to the receive antenna
index m. Therefore, M pairs of Wm and Bm should be cal-
culated and this incurs a complexity on the order of O

(
3
2M

4
)
.

For each subsystem, the BDFE algorithm requires 2M matrix
multiplications between a (M × M) matrix and a (M × 1)
vector, and the complexity is on the order of O

(
M3

)
. Thus

the overall complexity is on the order of O
(
3
2M

4 +KDM3
)

with K ≤ Q. For the GPIC-GSIC-BDFE scheme [23], the
number of subsystems is ⌈N

M ⌉ in the GSIC step, and the overall
complexity is approximately O

(
3
2NM3

)
.

The complexity of the second and later iterations of the

proposed scheme is mainly determined by D. For a large
D, the proposed scheme has a higher complexity but better
performance than the GPIC-GSIC-BDFE scheme. However the
overall complexity is mainly determined by the complexity of
the first iteration. The proposed algorithm reduces the com-
plexity of the first iteration significantly. It is shown through
numerical analysis that, compared to the GPIC-GSIC-BDFE
scheme, the proposed scheme can simultaneously reduce the
overall complexity and improve the overall performance.

V. SIMULATION RESULTS

In this section, the performance of the proposed S-PIC-BDFE
scheme is evaluated. The simulation results of a 7 × 3 UD-
MIMO system are illustrated first. At the transmitter, a rate 1/2
systematic convolutional code with the generator polynomial
G = [7, 5]8 is employed. Modulation schemes include QPSK,
eight PSK (8PSK) and 16QAM. With full multiplexing gain, the
UD-MIMO system can achieve a spectral efficiency of 14, 21,
and 28 bits/s/Hz for QPSK, 8PSK, and 16QAM, respectively.
The channel is assumed to be frequency-flat Rayleigh fading.
The S-PIC-BDFE algorithm is applied at the receiver. For the
first iteration, we choose kl = 0.01 and ku = 0.99 for bound
calculation. Since the total average transmit energy across all N
antennas is normalized to Es = 1, the average symbol energy
is E0 = Es/N = 1/7. For 16QAM, the minimum symbol
energy Emin = 0.2/7 is used to replace E0 when estimating the
minimum value of E

(l)
m . For the second iteration and beyond,

we choose K = 2 for the candidate set selection, and this yields
J = KD = 16 parallel subsystems.

The BER performances of the proposed S-PIC-BDFE al-
gorithm are shown in Figure 3, and they are compared to
those of the GPIC-GSIC-BDFE algorithm [23]. During the
first iteration, the performance of the S-PIC-BDFE is almost
identical to the GPIC-BDFE, even though the number of
subsystems explored by the S-PIC-BDFE is much less than
that of the GPIC-GSIC-BDFE that performs exhaustive search
over all the possible QD subsystems. For the second and later
iterations, the S-PIC-BDFE outperforms its GPIC-GSIC-BDFE
counterparts, and the performance difference becomes more
pronounced for systems with larger constellation sizes. For
example, at BER = 10−3 and during the fifth iteration, the
S-PIC-BDFE achieves a 0.6 dB and 0.8 dB performance gain
over the GPIC-GSIC-BDFE scheme for systems with 8PSK and
16QAM, respectively.

The performance of the proposed S-PIC-BDFE algorithm
depends heavily on the construction of the candidate set. Figure
4(a) shows the probability that the candidate set contains the
transmitted s1 for a system with 8PSK modulation. In the first
iteration, the true s1 is in the candidate set with a probability
higher than 99.8% even at a relatively lower Eb/N0. Such
a result indicates that the proposed new candidate selection
method for the first iteration can achieve a performance that is
very close to the exhaustive search, and this corroborates the
BER results in Fig. 3. However, the probability of including
the true s1 drops to 92% at the second iteration at Eb/N0 =
18 dB, and it gradually increases as the iteration progresses.
In the second and later iterations, the candidate set selection is
performed by using the a priori soft information, the reliability
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Fig. 3. BER for 7× 3 MIMO systems with flat Rayleigh fading channel.

of which is lower at the first few iterations. At the fifth iteration,
the probability of including the true s1 is very close to that of
the first iteration.

Even though the true s1 is included in the candidate set,
it might not be correctly detected by the BDFE and MED
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Fig. 4. Probabilities of the S-PIC-BDFE algorithm with 8PSK modulation.

algorithms due to the multiplexing interference and noise.
Figure 4(b) shows the probability that the true s1 is detected
after the BDFE for the various iterations. At the first iteration,
the probability of detecting the true s1 is relatively low because
of the low detection quality of s2 by the BDFE algorithm. The
probability increases monotonically as the iteration progresses,
and it reaches over 99% at the fifth iteration at Eb/No = 18.5
dB, which corresponds to BER = 1.7× 10−2 in Fig. 3(b). This
results indicate that the simple per-antenna candidate selection
method for the second iteration and beyond works very well
with the S-PIC-BDFE scheme.

The parameters ku and kl are key to both performance and
complexity. Table III shows the average number of parallel sub-
systems explored during the first iteration as well as the BER
of the first and fifth iterations with different ku. To simplify the
analysis, we choose kl = 1−ku. The Eb/N0 is chosen to ensure
that the UD-MIMO system achieves a relatively low BER. We
choose Eb/N0 = 13 dB for QPSK modulation, 18.5 dB for
8PSK, and 24 dB for 16QAM, respectively, and all yield satis-
factory BER for practical systems. For the proposed algorithm,
the average number of subsystems visited can be regarded as
a measurement of complexity; thus Table III shows the trade-
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TABLE III
AVERAGE NUMBER OF SUBSYSTEMS SEARCHED DURING THE FIRST ITERATION OF THE PROPOSED S-PIC-BDFE, Eb/N0 = 13 dB FOR QPSK, 18.5 dB

FOR 8PSK AND 24 dB FOR 16QAM

ku Modulation Avg. # of subsystems Percentage (%) BER for 1st iter. BER for 5th iter.

1
QPSK 238 92.97 0.0295 4.6689× 10−5

8PSK 3.4× 103 83.01 0.0273 9.7466× 10−5

16QAM 3.45× 104 52.64 0.0373 0.0013

0.99
QPSK 162 63.28 0.295 4.6689× 10−5

8PSK 1.8× 103 45.46 0.0273 9.7466× 10−5

16QAM 2.48× 104 37.84 0.0399 0.0017

0.8
QPSK 109 42.58 0.0295 5.0924× 10−5

8PSK 1.4× 103 34.18 0.0273 9.7466× 10−5

16QAM 2.09× 104 31.89 0.0426 0.0019

0.6
QPSK 90 35.16 0.0301 5.5438× 10−5

8PSK 1.2× 103 29.30 0.0274 6.5018× 10−5

16QAM 2.03× 104 30.98 0.0432 0.0020

TABLE IV
COMPARISON FOR AVERAGE NUMBER OF COMPLEX MULTIPLICATIONS DURING THE FIRST ITERATION OF THE SIMPLIFIED PIC-BDFE AND THE

GPIC-BDFE

Modulation Eb/N0 (dB) GPIC-BDFE Proposed: simulated Proposed: approximation Percentage (%)
QPSK 13 1.69× 104 1.29× 104 1.34× 104 76.33
8PSK 19 4.18× 105 2.38× 105 — 56.94

16QAM 24.5 1.14× 107 5.27× 106 5.60× 106 46.23

off between the complexity and performance for different ku.
We observe that reducing ku (thus increasing kl) would reduce
the average number of subsystems visited. When ku changes
from 1 to 0.99, the reduction of the average number of the
subsystems is the most significant. For example, for 8PSK
modulation, the average number of subsystems visited during
the first iteration changes from 3.4 × 103 to 1.8 × 103. With
ku decreasing continually, the average number of subsystems
also decreases, but not significantly. With appropriate choice
of ku for high order constellations, less than half of all the
QD subsystems are explored, and this results in a more than
50% complexity reduction. The choice of ku also affects the
performance of the proposed algorithm slightly. Reducing ku
only leads to a small performance degradation. Our simulations
show that, these conclusions also hold for a larger range of
Eb/N0.

Figure 5 shows the approximation of the average number
of subsystems explored according to Sec. IV for the 7 × 3
UD-MIMO system with ku = 0.99. The solid line in Fig.
5 is the actual average number of subsystems explored in
the Monte Carlo simulation with 5,000 channel realizations
for every Eb/N0. From Fig. 5, we observe that Ĵ is a good
approximation when the adjustment factor β is chosen as 2,048
for QPSK modulation and 512 for 16QAM modulation.

Figure 6 shows the average number of complex multipli-
cations required for the proposed S-PIC-BDFE scheme and
the GPIC-GSIC-BDFE in the first iteration with ku = 0.99.
Since channel ordering and the BDFE filter design are the same
for both schemes, we only counted the number of complex

multiplications used in the search process. Since exhaustive
search is used in the first iteration of the GPIC-GSIC-BDFE
scheme, the average number of multiplications of the GPIC-
BDFE scheme can be also regarded as the upper bound of
the complexity for the proposed S-PIC-BDFE scheme. The
complexity of the proposed S-PIC-BDFE scheme is lower
than that of the GPIC-BDFE for all configurations, and the
difference becomes bigger at higher Eb/N0. For QPSK modu-
lation, the S-PIC-BDFE requires 10% to 30% less number of
multiplications than the GPIC-GSIC-BDFE when the Eb/N0

varies from 8 to 14 dB. The complexity reduction is even
bigger for higher order modulations. The S-PIC-BDFE requires
40% and 60% less number of multiplications than the GPIC-
GSIC-BDFE for systems with 8PSK and 16QAM, respectively.
The comparison for the number of the complex multiplications
is also shown in table IV. The Eb/N0 is chosen to ensure a
relatively low BER. We can observe that, for QPSK modu-
lation, the proposed S-PIC-BDFE algorithm requires 76.33%
multiplications compared with the conventional algorithm. For
8PSK and 16QAM, only 56.94% and 46.23% multiplications
are required, respectively. These results indicate that the S-PIC-
BDFE is more efficient for higher order modulations.

The simulation results of a 4 × 2 UD-MIMO system with
16QAM modulation are shown to demonstrate that the S-
PIC-BDFE also works well and is efficient for other antenna
configurations. The same rate 1/2 convolutional code with the
generator polynomial G = [7, 5]8 was employed. The S-PIC-
BDFE algorithm was applied at the receiver and the same
parameters were used except that the average symbol energy
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Fig. 5. Approximation of the average number of subsystems explored for the
first iteration. Parameters are N = 7, M = 3, kl = 0.01 and ku = 0.99.
The average symbol energy Emean = 1/7 is used to estimate the upper
and lower bounds E

(u)
m and E

(l)
m for QPSK. The minimum symbol energy

Emin = 0.2/7 is used to estimate the lower bound E
(l)
m for 16QAM.

became E0 = 1/4 and the minimum symbol energy was
Emin = 0.2/4.

Figure 7(a) shows the BER performance of the S-PIC-BDFE
and the conventional GPIC-GSIC-BDFE. Similar to the 7 × 3
UD-MIMO system, the S-PIC-BDFE algorithm has the same
performance as the conventional GPIC-BDFE algorithm at the
first iteration and outperforms the conventional algorithm at
subsequent iterations. For example, at the fifth iteration, the
performance of S-PIC-BDFE algorithm is about 0.8 dB better
than that of GPIC-BDFE algorithm at BER = 10−3.

Figure 7(b) shows average number of complex multiplica-
tions for the 4 × 2 UD-MIMO with 16QAM modulation. The
approximated number of multiplications computed according
to Sec. IV is also illustrated. The S-PIC-BDFE algorithm has a
lower computational complexity compared to the GPIC-BDFE
algorithm. It requires only 60.05% complex multiplications of
the GPIC-BDFE algorithm. The simulation results indicate that
the proposed S-PIC-BDFE algorithm is efficient for different
antenna configurations.

8 9 10 11 12 13 14
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

E
b
/N

0
 (dB)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
c
o

m
p

le
x
 m

u
lt
ip

lic
a

ti
o

n
s

 

 

GPIC−BDFE

proposed: approximation

proposed: simulated

(a) QPSK

17.5 18 18.5 19 19.5
2

2.5

3

3.5

4

4.5

5
x 10

5

E
b
/N

0
 (dB)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
c
o

m
p

le
x
 m

u
lt
ip

lic
a

ti
o

n
s

 

 
GPIC−BDFE

proposed: simulated

(b) 8PSK

24 24.5 25 25.5 26

2

4

6

8

10

12

14

x 10
6

E
b
/N

0
 (dB)

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
c
o

m
p

le
x
 m

u
lt
ip

lic
a

ti
o

n
s

 

 

GPIC−BDFE

proposed: approximation

proposed: simulated

(c) 16QAM

Fig. 6. Average number of complex multiplications required for the UD-
MIMO system with N = 7 and M = 3. Parameters are kl = 0.01 and
ku = 0.99. The average symbol energy Emean = 1/7 is used to estimate the
upper and lower bounds E

(u)
m and E

(l)
m for QPSK and 8PSK. The minimum

symbol energy Emin = 0.2/7 is used to estimate the lower bound E
(l)
m for

16QAM.

VI. CONCLUSIONS

In this paper, a low complexity S-PIC-BDFE scheme has
been proposed for the turbo detection of UD-MIMO systems. A
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(b) Average number of complex multiplications

Fig. 7. Simulation results for a 4 × 2 UD-MIMO system with 16QAM
modulation. Parameters are kl = 0.01 and ku = 0.99. The average symbol
energy Emean = 1/4 is used to estimate the upper bounds E

(u)
m . The

minimum symbol energy Emin = 0.2/4 is used to estimate the lower bound
E

(l)
m .

Q-ary modulated UD-MIMO system with N transmit antennas
and M receive antennas was partitioned into Q(N−M) parallel
M × M subsystems, but only a small set of the symmet-
ric subsystems were selected to perform parallel interference
cancelation and BDFE detection. In the first iteration, a new
candidate set construction method was proposed by exploring
the statistical properties of the received signals. For the second
iteration and beyond, the candidate set was constructed by using
the a priori information from previous iterations. Simulation
results showed that the proposed S-PIC-BDFE method can
achieve better BER performance than the GPIC-GSIC-BDFE
method with exhaustive search, but with a lower complexity.
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