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Abstract—A two-stage list sphere decoding (LSD) algorithm is
proposed for under-determined multiple-input multiple-output
(UD-MIMO) systems that employ N transmit antennas and
M < N receive antennas. The two-stage LSD algorithm exploits
the unique structure of UD-MIMO systems by dividing the N
detection layers into two groups. Group 1 contains layers 1 to
M that have similar structures as a symmetric MIMO system;
while Group 2 contains layers M + 1 to N that contribute to
the rank deficiency of the channel Gram matrix. Tree search
algorithms are used for both groups, but with different search
radii. A new method is proposed to adaptively adjust the tree
search radius of Group 2 based on the statistical properties of the
received signals. The employment of the adaptive tree search can
significantly reduce the computation complexity. We also propose
a modified channel Gram matrix to combat the rank deficiency
problem, and it provides better performance than the generalized
Gram matrix used in the Generalized Sphere-Decoding (GSD)
algorithm. Simulation results show that the proposed two-stage
LSD algorithm can reduce the complexity by one to two orders
of magnitude with less than 0.1 dB degradation in the Bit-Error-
Rate (BER) performance.

Index Terms—Two-stage LSD algorithm, under-determined
multiple-input multiple-output (UD-MIMO), turbo detection, list
sphere decoding (LSD), depth-first tree search.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) wireless
communication systems have attracted a wide range of

attention due to its high spectral efficiency and good perfor-
mance over fading channels. Most existing studies on MIMO
systems focus on symmetric (N = M ) or over-determined
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(N < M ) systems, where N and M are the numbers of
transmit antennas and receive antennas, respectively.

Under-determined MIMO (UD-MIMO) systems with more
transmit antennas than receive antennas have a wide range
of practical applications. The mobile terminals in a wireless
system usually have fewer antennas than the base station due
to the size limit, and this results in UD-MIMO systems in the
downlink of cellular systems or broadcasting systems. The
UD-MIMO system can also be used to model wireless sensor
networks, where a large number of sensors transmit to the
base station simultaneously.

Despite the importance of UD-MIMO systems, the research
in this area is scarce due to the technical challenges of
detecting a high dimensional signal by observing its projection
onto a low dimensional space. Many existing algorithms
proposed for the symmetric or the over-determined MIMO
systems, for example, the sphere decoding (SD) algorithm
[1], [2], the K-best algorithm [3], [4], the fixed-complexity
sphere decoding (FSD) algorithm [5], [6], and the vertical
Bell laboratories layered space-time (V-BLAST) [7], cannot be
readily applied to UD-MIMO systems due to the extra N−M
dimensions in the transmitted signal. A UD-MIMO system
can be detected by maximum likelihood (ML) or maximum a
posteriori (MAP) detection, which employs exhaustive search
over all the possible QN transmitted vectors with Q being
the modulation level. The exponentially growing complexity
is prohibitive for practical systems with even moderate values
of Q and N .

Existing UD-MIMO detection methods can be classified
into two categories: the SD-based algorithms and the inter-
ference cancelation (IC) based algorithms. For the SD-based
algorithms, a generalized SD (GSD) algorithm is proposed in
[8] for UD-MIMO systems, where the UD-MIMO system is
partitioned into QN−M parallel symmetric subsystems such
that the regular SD algorithm can be employed for each
subsystem. The GSD requires an exhaustive search among the
QN−M subsystems. Modified GSD algorithms are proposed
in [9], [10], where the exhaustive search is replaced with low
complexity alternatives at the cost of performance loss. In [11],
a modified metric calculation method with diagonal loading is
proposed to avoid the inversion of a rank-deficient matrix in
the SD algorithm. A λ-GSD algorithm is proposed in [12]
by employing a λ-loading method to convert the UD-MIMO
system into a symmetric MIMO system.

For the IC-based algorithms, a generalized parallel IC
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Fig. 1. Turbo-MIMO transceiver block diagram, where Π and Π−1 denotes
the interleaver and the deinterleaver, respectively.

(GPIC) scheme is proposed in [13], and it is later applied to the
iterative turbo detection of UD-MIMO systems in [14] with the
aid of the block decision feedback equalization algorithm [15].
In the first iteration of the turbo detection, the GPIC algorithm
partitions the UD-MIMO system into QN−M parallel subsys-
tems as in the GSD algorithm, and parallel IC is performed
with exhaustive search over the QN−M -dimensional signal
space. In the second and subsequent iterations, the UD-MIMO
system is detected with a generalized serial interference
cancelation (GSIC) scheme, where the interference from the
extra dimension is removed by using the soft decisions from
the current and previous iterations. The GSIC removes the
need for exhaustive search. The GPIC-GSIC scheme achieves
good performance for BPSK modulated system with relatively
low complexity. Its performance degrades rapidly at high
modulation levels. A modified FSD algorithm is proposed
in [16] to replace the GPIC in the first iteration for high-
level modulation schemes, and better BER performance is
achieved than the GPIC-GSIC algorithm at the cost of higher
computational complexity.

In this paper, a two-stage LSD algorithm is proposed to
improve the performance-complexity tradeoff in UD-MIMO
detections. The N detection layers, which correspond to the
N transmit antennas, are divided into two groups. Group 1
contains layers 1 to M , and group 2 contains layers M + 1
to N corresponding to the extra N − M signal dimensions
at the transmitter. The layers in group 2 contribute to the
rank deficiency of the channel matrix, and they have very
low signal-to-noise ratio (SNR). Due to the low SNR, most
existing UD-MIMO detection methods use exhaustive search
over layers M+1 to N , and this incurs very high complexity.
To address this problem, we propose to use a modified list
SD (LSD) algorithm with a depth-first tree search in layers
M+1 to N . The modified LSD dynamically adjusts the radius
of the tree search based on the channel condition and the
statistical properties of the metric used in the tree search, such
that the probability of missing the optimum solution in the
tree search is upper bounded by a very small threshold. Such
a method ensures good performance with complexity much

lower than the exhaustive search employed by most existing
UD-MIMO detection methods. A depth-first tree search with
a conventional radius constraint is then used for the detection
of layers 1 to M to further reduce the complexity. Simulation
results and complexity analysis demonstrate that the proposed
two-stage LSD algorithm has a much lower complexity than
existing algorithms with similar performances.

Common notations used in the paper are: IN is the identity
matrix with size N × N ; Diag(d) is a diagonal matrix with
its diagonal elements being the elements of the vector d;
CN (μ, σ2) denotes the complex Gaussian distribution with
mean μ and variance σ2; χ2

m denotes the Chi-squared dis-
tribution with m degrees of freedom; E(·) is the expectation
operator; CM×N and RM×N denote the (M×N)-dimensional
complex and real spaces, respectively; and superscripts (·)H
and (·)T denote Hermitian transpose and transpose, respec-
tively.

II. THE UD-MIMO SYSTEM MODEL

Consider a UD-MIMO system with N transmit antennas
and M receive antennas as depicted in Fig. 1, where N > M .
The N independent bit streams {an}Nn=1 are encoded by
channel encoders to generate the coded bit streams {bn}Nn=1.
The coded bit streams are interleaved by pseudo-random
interleavers to obtain the interleaved bit streams cn = Π(bn),
for n = 1 · · ·N , where Π(·) is the interleaving operator.
Then every P bits are mapped to a symbol in the modulation
constellation set S with a cardinality Q = 2P . The modulated
symbol vectors, xo = [x1, · · · , xN ]T ∈ SN×1, are transmitted
on N antennas through a channel with flat fading and additive
white gaussian noise (AWGN).

The equivalent discrete-time signals at the receiver can be
represented as

y = Hxo +w (1)

where y = [y1, · · · , yM ]T ∈ CM×1 and w =
[w1, · · · , wM ]T ∈ CM×1 represent the received signal and the
noise vector, respectively. Every element of the noise vector
w has a complex Gaussian distribution with zero mean and
variance σ2. The matrix H ∈ CM×N is the flat-fading MIMO
channel matrix, with the (m,n)-th element hm,n ∼ CN (0, 1)
being the complex channel coefficient between the n-th trans-
mit antenna and the m-th receive antenna. It is assumed that
the channel matrix H is known at the receiver.

For the UD-MIMO system, the receiver may employ the
turbo detection similar to conventional MIMO solutions, as
shown in Fig. 1, where a MIMO soft-symbol detector and
N soft channel decoders are connected by de-interleavers and
interleavers. Soft information is iteratively exchanged between
the soft-symbol detector and the soft channel decoders. Let
L
(n,p)
D1 , L(n,p)

E1 and L
(n,p)
A1 denote the soft a posteriori, extrinsic,

and a priori log-likelihood ratios (LLRs) for bit cn,p at the
symbol detector, where the superscripts p and n denote the p-
th bit from the n-th transmit antenna. Similarly, L(n,p)

D2 , L(n,p)
E2

and L
(n,p)
A2 denote the a posteriori, extrinsic, and a priori LLRs

of cn,p at the channel decoder, respectively.
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The MIMO soft-symbol detector calculates L
(n,p)
D1 as

L
(n,p)
D1 = ln

∑
x∈Sn,p,0

exp
(− 1

σ2 ||y −Hx||2)P (x)∑
x∈Sn,p,1

exp
(− 1

σ2 ||y −Hx||2)P (x)
, (2)

where x = [x1, · · · , xN ]T ∈ SN×1 is the modulated symbol
vector, σ2 is the variance of the AWGN, P (x) is the a priori
probability of x that can be calculated from Ln,p

A1 , and the set
Sn,p,b contains all the vectors in SN×1 with cn,p = b, for
b ∈ {0, 1}.

Denote cn = [cn,1, · · · , cn,P ]T as the vector of coded bits
mapped to the symbol xn. Then the a priori probability is
P (x) =

∏N
n=1

∏P
p=1 P (cn,p). Given the a priori LLR Ln,k

A1

for cn,k, we have

P (cn,k = 1) =
1

1 + exp(Ln,k
A1 )

, (3a)

P (cn,k = 0) =
exp(Ln,k

A1 )

1 + exp(Ln,k
A1 )

. (3b)

Substituting (3) into P (x) yields

P (x) = exp

(
1

2
sTx · LA1

)
×
∏
n,k

exp
(

1
2L

n,k
A1

)

1 + exp(Ln,k
A1 )

(4)

where sx = [s1,1, · · · , s1,P , · · · , sN,1, · · · , sN,P ]
T , with

sn,p = 1− 2cn,p, and LA1 = [L1,1
A1 , · · · , L1,P

A1 , · · · , LN,1
A1 ,

· · · , LN,P
A1 ]T . Combining (2) and (4), we have

L
(n,p)
D1 = ln

∑
x∈Sn,p,0

exp
(− 1

σ2 ||y −Hx||2 + 1
2
sTx · LA1

)
∑

x∈Sn,p,1
exp

(− 1
σ2 ||y −Hx||2 + 1

2
sTx · LA1

) . (5)

Equation (5) can be simplified by using the max-log-map
approximation [17],

L
(n,p)
D1 ≈ 1

2
max

x∈Sn,p,0

(
− 2

σ2
||y −Hx||2 + sTx · LA1

)

−1

2
max

x∈Sn,p,1

(
− 2

σ2
||y −Hx||2 + sTx · LA1

)
. (6)

The extrinsic LLR of the MIMO soft-symbol detector is cal-
culated as L

(n,p)
E1 = L

(n,p)
D1 −L

(n,p)
A1 , and it is deinterleaved as

L
(n,p)
A2 = Π−1

(
L
(n,p)
E1

)
, where Π−1(·) is the de-interleaving

operator. The channel decoders compute the a posteriori LLR
L
(n,p)
D2 and obtain the extrinsic LLR L

(n,p)
E2 = L

(n,p)
D2 −L

(n,p)
A2 .

The extrinsic LLR of the channel decoder L
(n,p)
E2 is then

interleaved as L(n,p)
A1 = Π(L

(n,p)
E2 ) and used as the soft a priori

input to the MIMO soft-symbol detector in the next iteration.
Initially, L(n,p)

A1 = 0 since there is no a priori information in
the first iteration.

The computational complexity of (6) is on the order of
O(QN ) due to exhaustive search of all the vectors in SN .
The complexity becomes prohibitively high when Q or N is
large. Low complexity algorithms, such as LSD algorithm, are
designed for symmetric-MIMO or over-determined MIMO, to
simplify the calculation of (6) while achieving near-optimum
performance. Instead of exhaustively searching all the possible
vectors, the LSD algorithm [2] searches a hyper-sphere around
the received vector as

x ∈ {x|x ∈ SN×1, ||y −Hx||2 < r21}, (7)

where r1 is a pre-defined constraint radius. By using matrix
decomposition and removing the constant terms, the inequality
constraint in (7) is equivalent to

||U(x − x̂)||2 < r22 , (8)

where the search center x̂ = H†y is the least squares (LS) es-
timate of the transmitted vector xo, and H† = (HHH)−1HH

is the pseudo-inverse of the channel matrix H. The upper-
triangular matrix U can be obtained from the Cholesky
decomposition of the Gram matrix G = HHH = UHU.
Instead of exhaustively searching all the vectors in SN , the
LSD algorithm will only search the vectors satisfying (8).

By exploiting the upper-triangular structure of the matrix
U in the conventional MIMO system, the LSD algorithm
performs searching by following a tree structure with N layers.
The nodes on the n-th layer of the tree correspond to the
possible values of xn. The N -th layer is the root. Each node
on the n-th layer spawns Q child nodes in the (n − 1)-th
layer, corresponding to the Q possible values of xn−1. The
tree stretches from the N -th layer (the root layer) to the first
layer (the leaf layer), thus a path from a leaf node to the
root layer denotes a possible transmitted vector x. A full tree
has QN leaf nodes, thus QN paths, corresponding to the QN

vectors in SN . The LSD algorithms will only search a subset
of the tree to reduce the computation complexity.

The LSD algorithm employs a depth-first tree search. In
the root layer, all the nodes that satisfy the tree search
constraint survive. At the n-th layer, one of the survival nodes
is chosen as the parent node, and it will spawn Q child nodes
in the (n − 1)-th layer. The child nodes in the (n − 1)-
th layer that satisfy the tree search constraint will be the
survival nodes. This procedure is performed layer by layer.
If layer 1 is reached and one or more leaf nodes satisfy
the constraint in (8), then the paths leading to these leaf
nodes are survival paths. If none of the Q child nodes in
one layer satisfies the constraint, the searching operation will
trace backward to choose another survival node in the previous
layer as the parent node. When the constraint radius is chosen
appropriately, the LSD algorithm can reduce the computational
complexity with negligible performance degradation because
the probability of missing the true path is very small [18].

The LSD algorithm works well for conventional MIMO
systems with N ≤ M . However, it cannot be readily applied
to UD-MIMO systems for two reasons.

First, the Gram matrix G = HHH for a UD-MIMO system
is rank-deficient with N > M . There are always D = N −
M zero eigenmodes in G. Consequently, the pseudo-inverse
of H does not exist and the LS estimate of xo cannot be
obtained. In addition, the last D rows of the upper-triangular
matrix U obtained from the Cholesky decomposition of the
Gram matrix G or equivalent by the QR decomposition of the
channel matrix H are all zeros, thus it cannot be used for the
tree search. To overcome this problem, a generalized Gram
matrix Gg = G + βI with β being a small positive number
is used in place of G to estimate xo for UD-MIMO systems
[11]. When β = σ2, the estimate of xo is equivalent to a
minimum mean square error (MMSE) estimation. It is reported
that β will not affect the performance for constant-modulo
modulation for uncoded system. However, for coded systems,
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a large β will affect the LLR and thus the performance even
for constant-modulo modulation.

Second, it is difficult to obtain an appropriate value of the
constraint radius r2 in (8) for UD-MIMO systems, even if the
initial estimate of xo is made available with the generalized
Gram matrix. If r2 is selected based on the rules for conven-
tional MIMO systems [2], it would only be suitable for the
layers corresponding to the M non-zero eigenmodes, but too
large for the D layers corresponding to the zero eigenmodes.
A unnecessarily large value of r2 means exhaustive search for
the D layers, which leads to high computation complexity.
This fact means that, for UD-MIMO systems, the layers
corresponding to the zero eigenmodes have different properties
than the layers corresponding to the non-zero eigenmodes, and
they should be treated differently.

III. THE PROPOSED TWO-STAGE LSD ALGORITHM

This section proposes a two-stage LSD algorithm to balance
the complexity-performance tradeoff for UD-MIMO systems.
The two-stage LSD algorithm explores the channel structure
of the UD-MIMO systems and uses different constraint radii
synergistically to suit the structure of UD-MIMO systems. A
new channel ordering method is also proposed so that the
layers corresponding to stronger channel modes are moved
to the bottom D layers of the tree. A new modified Gram
matrix is then utilized to compute the initial estimate of xo,
which is used as the search center for the proposed algorithm.
With the initial estimate, the bottom D layers of the tree are
searched with a modified constraint radius selection method
while the top M layers are searched with the conventional
radius selection method.

The following subsections will detail the channel ordering,
initial symbol estimation, and tree search for the proposed
two-stage LSD algorithm.

A. Channel Ordering

The main objective of channel ordering for UD-MIMO
systems is to classify the N layers of the channel Gram matrix
into two groups: the top M layers that correspond to weaker
channel modes, and the bottom D layers that correspond to the
stronger channel modes. The ordering of the D layers inside
the bottom group plays a very small role on the performance
of the tree search. A three-step heuristic approach is proposed
here for channel ordering of the UD-MIMO system:

1) Calculate the channel Gram matrix: G = HHH =
[g1, · · · ,gN ], where gi is the i-th column of G.

2) Calculate the norms, ‖gi‖, and sort them in an ascending
order, such that ‖gp1‖ ≤ · · · ≤ ‖gpM ‖ ≤ · · · ≤ ‖gpN‖.
Note that the sorting operation can stop after finding
the smallest M norms of gi because the ordering of the
bottom D layers has negligible effects;

3) Permute the channel matrix into Hp = [hp1 , · · · ,hpN ],
where [p1, · · · , pN ] is the permutation of [1, · · · , N ]
according to the order obtained from Step 2) and hpi is
the pi-th column vector of the original channel matrix
H.

Using the norms of the columns of the Gram matrix G
as the measurement of the channel reliability avoids the

inversion operation of a rank-deficient matrix. Our simulation
results indicate that the proposed ordering scheme has lower
complexity and better performance than the channel ordering
scheme in [6].

B. Initial symbol estimation

The Gram matrix of the permuted channel matrix Gp =
HH

p Hp is rank deficient with D zero eigenvalues. The eigen-
value decomposition of Gp takes the form

Gp = VH
p ΓVp, (9)

where the diagonal matrix Γ = Diag{γ1, · · · , γM , 0, · · · , 0},
with γi being the M non-zero eigenvalues of Gp and the
columns of Vp ∈ CN×N are the corresponding eigenvectors
of Gp.

Instead of using the generalized Gram matrix Gg = Gp +
βIN as in [11], we propose to use a modified Gram matrix
Gm = Gp+B to solve the problem of rank-deficiency, where

B = VH
p

(
0 0
0 βID

)
Vp, (10)

with β being a small positive number. The modified Gram
matrix only adds a small offset to the layers with zero eigen-
values without affecting the layers with non-zero eigenvalues.
In addition, this modification can facilitate the derivation of
the constraint radius used in the tree search as shown in the
next subsection.

With Gm, the initial estimate x̂ of the transmitted vector is
calculated as

x̂ = G−1
m HH

p y. (11)

It is noted that (11) is a biased estimate of xo due to the intro-
duction of the bias matrix B. That is E[x̂] = G−1

m HH
p Hpxo.

However, it serves as a good starting point for the subsequent
tree search.

C. Tree search

The proposed tree search is a combination of two depth-
first searches with different constraint radii. The metric for
the overall tree search is

Δ′ = ||y −Hpx||2. (12)

Without loss of generality, we assume the elements in x have
been reordered according to the ordering of the columns of
Hp.

With the modified Gram matrix, define an alternative metric
as

Δ = ||Um(x− x̂)||2 =

N∑
i=1

u2
ii|xi − zi|2, (13)

where the matrix Um = {uij} ∈ CN×N is an upper-
triangular matrix obtained from the Cholesky decomposition
of the modified Gram matrix Gm = UH

mUm, and zi can be
calculated as

zi = x̂i −
N∑

j=i+1

uij

uii
(xj − x̂j). (14)

zN = x̂N . (15)
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With the definition of Um and Gm, it is straightforward to
show that

Δ′ = Δ+ C − xHBx (16)

where C is a constant independent of x. There is a very small
difference between Δ′ and Δ contributed by the last term
in (16). However, since the value of β is usually very small
(β = 10−6 is used in this paper), the difference between the
two metrics is negligible for practical systems.

With the Cholesky decomposition Gm = UH
mUm, the

bottom D = N − M layers correspond to the M + 1 to
N column dimensions. Consequently, the values of uii, for
i = M + 1, · · · , N , are very small, which results in very low
SNR at these layers. Ordering the channel matrix such that the
columns of H with larger norms are in the bottom D layers
can slightly alleviate this problem, but the SNR of the bottom
D layers is still significantly lower than that of the first M
layers. As a result, if the same constraint radius is applied
to all the layers of the LSD algorithm, the detector will have
unnecessarily high computational complexity if a large radius
is used, or unsatisfied performance if a small radius is used.

For this reason, we propose to use different search radii for
the two groups. For the first group corresponding to layers N
to M + 1, we define a partial metric as

ΔD =

N∑
i=M+1

u2
ii|xi − zi|2. (17)

The depth-first tree search is performed for these layers with
respect to a new constraint, ΔD < r2D . The radius rD is a key
design parameter for the proposed two-stage LSD algorithm.
A larger rD means higher complexity, yet a smaller rD might
miss the optimum paths, especially in UD-MIMO systems
with a very low SNR in the bottom D layers. The choice of
rD depends on the structure of the receiver and the statistics
of the signals in the bottom D layers. The design of rD for
UD-MIMO systems will be addressed in section III-D.

The tree search of the first stage starts from layer N and
stops at layer M + 1. In the N -th layer, the values of xN

that satisfy the following condition are denoted as the survival
nodes,

u2
NN |xN − zN |2 < r2D. (18)

In the (n+1)-th layer for M+1 ≤ n < N , one of the survival
nodes is chosen as the parent node, which will spawn Q child
nodes in the n-th layer. The Q child nodes in the n-th layer
will be checked against the following condition

N∑
i=n

u2
ii|xi − zi|2 < r2D (19)

The child nodes that satisfy the above condition will be
denoted as the survival nodes in the n-th layer. If none of the
child nodes in the n-th layer satisfies (19), then the search will
back up to the previous layer and choose another survival node
as the parent node. The above procedure is performed from
layer N to layer M + 1 along the path of the tree. The path
from each survival node at layer M+1 traced back to layer N
is denoted as a survival path, and it will be added to the set of
survival paths. Once layer M +1 is reached, another survival

nodes in the root layer will be selected to start the search
again. The depth-first search terminates when all the survival
nodes at layer N have been used as a parent node. After the
depth-first search, NLSD paths with the smallest metrics are
chosen as the partial candidate paths. The number NLSD is
usually much smaller than QD. We choose NLSD = 1

8Q
D

in this paper. If the number of the survival paths is less than
NLSD, the tree search will continue and moves to the next
stage.

Layers M to 1 have higher SNR than the bottom D
layers. Therefore, the corresponding tree search adopts the
conventional radius calculation method as in [2]. The search
process is nearly the same with the tree search of the first
stage. The NLSD survival nodes in layer M +1 will be used
as the parent nodes for layer M . For a given parent node in
the (j+1)-th layer, the following constraint condition will be
checked

N∑
i=j

u2
ii|xi − zi|2 < R2, (20)

where R is the constraint radius for the second stage and
according to the method in [2], R is derived as

R2 = 2σ2KM − yH(I−H(Gm)−1HH)yH + E(xHBx),
(21)

where K ≥ 1 is chosen to ensure there are enough survival
paths for the LLR calculation, and the last term in (21) is
caused by the modification of the Gram matrix G. Since β is
small, the last term is negligible compared to the other terms.

After the second stage of the tree search, the Ncand paths
with the smallest metrics are chosen to form the set of
candidates L for LLR calculation. Usually Ncand is chosen
such that it is much smaller than QN , thus the complexity of
LLR calculation is significantly reduced. Similar with NLSD,
if the number of the survival paths is less than Ncand, the tree
search will terminate.

The set of survival paths obtained through the two-stage
tree search is used to calculate the soft LLR. The calculation
of the soft LLR is the same as (6) except that x ∈ Ln,p,b

replaces x ∈ Sn,p,b, where the set Ln,p,b contains the vectors
in the set L with cn,p = b, for b ∈ {0, 1}.

D. Radius for Tree Search of the first stage

For UD-MIMO systems, the constraint radius rD used for
the first stage tree search is a key parameter for achieving
the near-optimal performance while keeping the complexity
low. A smaller radius will reduce the number of nodes to
be visited, thus reducing the complexity, but at the cost of a
higher probability of missing the optimum path. The radius
selection method used for the conventional LSD algorithm is
no longer applicable to the first stage tree search of the UD-
MIMO systems. We propose a new method for calculating
the appropriate constraint radius rD based on the statistical
properties of the signals at layers M + 1 to N in UD-MIMO
systems.

The radius rD will be selected to ensure that the probability
of missing the optimum path is less than a specified threshold
value η. From (13), the metric for layers M + 1 to N given
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in (17) can be alternatively represented by

ΔD = eDUH
DUDeD, (22)

where eD = [xM+1 − x̂M+1, · · · , xN − x̂N ]T ∈ CD×1 is the
error vector in layers M+1 to N , and the matrix UD ∈ CD×D

is a sub-matrix of Um that contains the D ×D elements on
the bottom right corner of Um. The matrix UD is also an
upper triangular matrix.

We now study the statistical properties of ΔD, and the
results will help us identify the radius rD given the threshold
probability η. From (11), the error vector e = x − x̂ can be
written as

e = G−1
m Bx−G−1

m HH
p w. (23)

Consequently, the partial error vector eD containing the last
D elements of e can be expressed as

eD = ḠDBx− ḠDHH
p w, (24)

where ḠD ∈ CD×N is the sub-matrix of G−1
m containing the

bottom D rows of G−1
m .

Substituting (24) into (22) yields

ΔD = xHA1x− xHA2w −wHAH
2 x+wHA3w, (25)

where A1 = BHḠH
DUH

DUDḠDB, A2 =
BHḠH

DUH
DUDḠDHH

p , and A3 = HpḠ
H
DUH

DUDḠDHH
p .

Denote Δ1 = xHA1x, Δ2 = −xHA2w, and
Δ3 = wHA3w. Then ΔD = Δ1 + 2�(Δ2) + Δ3,
where � is the real part operator.

It is shown in the Appendix that if β is small, for example,
β = 10−6, then Δ2 ≈ 0, and Δ1 is upper bounded as Δ1 ≤
Δ̄1, where Δ̄1 is a constant defined as

Δ̄1 = β · max
x∈SN

‖x‖2 (26)

Therefore, the metric (25) can be approximated by

ΔD ≤ Δ̄1 +Δ3. (27)

Since β is small, the statistical behavior of ΔD is dominated
by Δ3.

Let the eigenvalue decomposition of the matrix A3 be
A3 = QHΛQ, where Λ = Diag(λ1, · · · , λM ) is the diagonal
matrix consisting of all the eigenvalues of A3, and Q is the
orthogonal matrix containing the corresponding eigenvectors.
Then we have

Δ3 = σ2zHΛz = σ2
M∑
i=1

λi|Zi|2, (28)

where z = Qw/σ follows a complex Gaussian distribution
with zero mean and covariance matrix IN , and Zi is the i-th
element of z. The metric Δ3 is in the quadratic form of the
complex Gaussian vector. Since the elements of z are mutually
independent, the moment generating function (MGF) of Δ3

conditioned on the channel matrix Hp is

MΔ3(t|Hp) = E
[
etΔ3|Hp

]
=

M∏
i=1

1

1− σ2λit
. (29)

The eigenvalues λi depend on the permuted channel matrix
Hp. For practical systems, the values of λi are usually

different from each other. Under the assumption of unique
eigenvalues, the MGF in (29) can be expanded by means of
partial fraction expansion as

MΔ3(t|Hp) =

M∑
i=1

ζi
1− σ2λit

, (30)

where ζi =
∏M

l=1,l �=i
λi

λi−λl
is the coefficients obtained from

partial fraction expansion.
The conditional probability density function (pdf) of Δ3 can

be obtained from (30) as

pΔ3(x|Hp) =

M∑
i=1

ζi
σ2λi

exp

(
− x

σ2λi

)
, (31)

Then the conditional probability that ΔD is less than the
squared radius r2D is

P (ΔD ≤ r2D|Hp) ≤ P (Δ3 ≤ r2D − Δ̄1|Hp) =
M∑
i=1

ζi

[
1− exp

(
−r2D − Δ̄1

σ2λi

)]
. (32)

The radius rD can then be obtained by numerically solving
the equation

M∑
i=1

ζi

[
1− exp

(
−r2D − Δ̄1

σ2λi

)]
= η, (33)

where Δ̄1 is a constant defined in (26). In this paper we set
η = 0.99 to ensure that the probability of missing the optimum
solution during the depth-first tree search is less than 1%.

To further improve the probability of finding the optimum
path, we can choose a search radius qr2D with q ≥ 1. The
parameter q allows us to adjust the complexity-performance
tradeoff.

It should be noted that, even if there are identical eigen-
values, we can still obtain the MGF with partial fraction
expansion, the form of which would be more complicated
than (30) due to the identical eigenvalues. However, due to
the randomness of Hp, the probability of identical eigenvalues
is negligible for practical applications. In case the identical
eigenvalues do occur, the metric Δ3 can be analyzed in the
similar manner. The derivation is omitted here for brevity.

The radius obtained by solving (33) is a function of H
through λi, therefore, different radii shall be selected for
different channel conditions. In most practical systems with
low or moderate Doppler spread, the channel usually changes
slowly, thus the receiver can adaptively adjust the search radius
only when the channel conditions change significantly.

IV. NUMERICAL RESULTS

A. Capacity analysis

In this subsection, the capacity and the mutual information
(MI) of UD-MIMO systems are analyzed and compared to
symmetric MIMO systems. If we assume that every antenna
at the transmitter has equal power, the capacity of the MIMO
channel due to Gaussian inputs is [7]

C = E

[
log2(IM +

ρ

N
HHH)

]
, (34)
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Fig. 2. Capacity comparison between 6× 2 MIMO and 2× 2 MIMO.

where ρ = Es/N0 with Es being the average symbol energy
and N0 the one-sided power spectral density of the AWGN.
For commonly used digital modulations, for example, MPSK
or MQAM, the average MI is calculated as [2]

I(x;y) =

−E log

⎡
⎣ 1

QN

1

(2πσ2)M

∑
x∈SN×1

exp

(
− 1

2σ2
||y −Hx||2

)⎤
⎦

−[−M log2(2πeσ
2)], (35)

where σ2 = N0/2. We use Monte-Carlo simulation to obtain
the value of the first term in (35).

Figure 2 shows the comparison of average MI between
a 6 × 2 UD-MIMO and a 2 × 2 symmetric MIMO. For
systems with Gaussian input, the capacity of the 6 × 2 UD-
MIMO system is better than that of the 2 × 2 system due
to the extra multiplexing gain provided by the additional
transmit antennas. At high Es/N0, the two capacity curves
with Gaussian inputs have the same slope because they share
the same number of receive antennas. The modulation schemes
of the finite alphabet cases are chosen such that a pair of
UD-MIMO and symmetric MIMO systems have the same
maximum MI when the code rate approaches 1. For example,
the maximum MI for the 6×2 UD-MIMO system with BPSK
modulation is 6 bps per channel use, which is the same as that
of the 2× 2 MIMO system with 8PSK modulation. Similarly,
the maximum MI of the 6 × 2 system with QPSK or the
2 × 2 system with 64QAM is 12 bps per channel use. For
the finite alphabet inputs cases, the average MI saturates at
high Es/N0. The UD-MIMO systems with larger numbers
of antennas and low order constellations can achieve the
same average MI as symmetric MIMO systems with smaller
numbers of antennas and high order constellations. For the
commonly used code rate such as rate 5/6 or rate 2/3, the
UD-MIMO with QPSK modulation outperforms its symmetric
MIMO counterpart with 64QAM modulation by 2.6 dB or
2.5 dB, respectively. This result indicates that practical UD-
MIMO systems outperform their symmetric MIMO system
counterparts by leveraging the multiplexing gain.
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Fig. 3. Performance comparison between a 6× 2 UD-MIMO and a 2 × 2
symmetric MIMO.

B. Performance analysis

This subsection presents the simulation results to demon-
strate the performance of the proposed two-stage LSD algo-
rithm. An UD-MIMO system with N = 6 transmit antennas
and M = 2 receive antennas was compared to a 2 × 2
symmetric MIMO system with the same information rates.
The information bits were divided into blocks with a block
length of 1024 bits. A rate 1/2 convolutional code with the
generator polynomial G = [7, 5]8 was employed to encode
the information bits. We assumed that the receiver had perfect
knowledge of the channel matrix H = {hm,n}. The MIMO
channel coefficients hm,n ∼ CN (0, 1) were identically and
independently distributed complex Gaussian random variables.
Turbo equalization was applied at the receiver and the max-
imum number of iteration was five. For the proposed two-
stage LSD algorithm, the number of survival paths for the
first search stage was NLSD = 1

8Q
(N−M). Thus NLSD = 32

for QPSK constellation, NLSD = 512 for 8PSK constellation
and NLSD = 8192 for 16QAM constellation. The value of β
was 10−6. The radius of the first search stage was chosen as
r′2D = qrD with rD solved from (33) and q = 2. The number
of survival paths for the LLR calculation was Ncand = 64 and
was much smaller than QN .

Figure 3 shows the performance comparison between the
6×2 UD-MIMO with QPSK constellation and a 2×2 symmet-
ric MIMO with 64QAM constellation. The information rates
of the two systems were the same at 6 bits per channel use with
a rate 1/2 channel code. For the symmetric MIMO system, the
conventional LSD algorithm proposed in [2] was applied. For
the UD-MIMO system, the proposed algorithm, as well as the
optimum ML algorithm were applied. At BER = 10−3, the
6 × 2 UD-MIMO with QPSK modulation and the proposed
two-stage LSD algorithm outperforms the 2 × 2 symmetric
MIMO with 64QAM modulation and the conventional LSD
algorithm by more than 2 dB at the fifth iteration. The gap
between the proposed algorithm and the optimum algorithm is
small. At BER = 10−4, the performance loss of the proposed
algorithm is less than 0.3 dB.

The proposed algorithm was compared to the generalized



QIAN et al.: TWO-STAGE LIST SPHERE DECODING FOR UNDER-DETERMINED MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS 6483

15 15.5 16 16.5 17
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it 

E
rr

or
 R

at
e

 

 

Proposed: 1st iter.
Proposed: 2nd iter.
Proposed: 5th iter.
GSD: 1st iter.
GSD: 2nd iter.
GSD: 5th iter.

(a) 8PSK

24 24.2 24.4 24.6 24.8 25
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
it 

E
rr

or
 R

at
e

 

 

Proposed: 1st iter.
Proposed: 2nd iter.
Proposed: 5th iter.
GSD: 1st iter.
GSD: 2nd iter.
GSD: 5th iter.

(b) 16QAM

Fig. 4. Simulated BER results for 6 × 2 UD-MIMO using the proposed
algorithm in comparison to the GSD algorithm.

sphere decoding (GSD) algorithm proposed in [11] for 8PSK
and 16QAM constellation, as shown in Fig. 4. The gap
between the two algorithms is smaller than 0.1 dB at the
fifth iteration at BER = 10−4 for 8PSK modulation. Similarly,
for 16QAM modulation, at BER = 10−3, the gap between
the proposed algorithm and the GSD algorithm is also less
than 0.1 dB at the fifth iteration. It can be concluded that
the performance of the proposed two-stage LSD algorithm is
nearly the same as that of the conventional GSD algorithm.
However, we will show in Section V that the proposed two-
stage LSD algorithm exhibits lower computational complexity
than the GSD algorithm.

V. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed algorithm
is analyzed in comparison to the GSD algorithm proposed in
[11]. The detection algorithm for UD-MIMO systems consists
of four parts: channel ordering, initialization, tree search, and
LLR calculation. The complexity of the tree search is the
highest among the four parts and the complexity of the other

three parts is negligible. We will focus on complexity analysis
of the tree search part here. The number of the arithmetic
operations, including real multiplications and real additions, is
used to measure the complexity. One complex multiplication
is counted as four real multiplications and two real additions,
and one complex addition is counted as two real additions.

A. Approximation of the Complexity

For the SD-based detection algorithm, the average number
of arithmetic operations can be calculated as

Noper =

N∑
n=1

SnNn, (36)

where Sn is the number of nodes survived in layer n+1 and
Nn is the number of arithmetic operations performed over one
node in the n-th layer. Layer N is the root layer and SN = 1.
The value of Nn is computed as follows. According to (19),
for the n-th layer, the metric is written as

N∑
i=n+1

u2
ii|xi − zi|2 + u2

nn|xn − zn|2

= dn+1 + u2
nn|xn − zn|2, (37)

where dn+1 =
∑N

i=n+1 u
2
ii|xi − zi|2 is the metric calculated

by the pervious layers. Substituting (14) into (37), we get an
expression that is easier to analyze,

dn+1 +

∣∣∣∣∣∣unnxn −
⎡
⎣unnx̂n −

N∑
j=n+1

uij(xj − x̂j)

⎤
⎦
∣∣∣∣∣∣
2

. (38)

For the root layer, dN+1 = 0 and eqn. (38) is simplified as

u2
NN |xN − x̂N |2, (39)

which requires one complex subtraction, four real multiplica-
tions and one real addition for one possible value of xN . Thus
for the root layer, NN = 7M .

For the other layers, the summation in (38) requires N −n
complex subtractions, N − n complex multiplications, which
yield 8(N − n) real operations. The last two terms in (38)
incur 8(N −n) + 4 operations. For each possible xn, 8 arith-
metic operations are required. Thus the number of operations
required for one node in layer n is

Nn = 8M + 8(N − n) + 4, 1 ≤ n < N. (40)

We let kn = N+1−n denote the dimension of the vectors
in layer n. The number of survival paths in layer n equals to
the number of vectors x(n) ∈ Skn×1 satisfying

||x(n)
0 −Unx

(n)||2 ≤ r2, n = 1, · · · , N (41)

where the vector x
(n)
0 ∈ Skn×1 is formed by the last kn

components of x0 = Ux̂, and r is the constraint radius. The
matrix Un ∈ Ckn×kn is the right-lower sub-matrix of the
matrix Um.

The number of vectors satisfying (41) can be identified with
the method of lattice packing, which is suitable for lattice-
based constellations such as QAM modulations. According to
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[19], for a infinite lattice, the number of vectors lying in a
hyper-sphere with radius r can be approximated by

J (n)
r 	 V

(n)
r

V
(n)
basis

, (42)

where V
(n)
r is the volume of a n-dimensional hyper-sphere

with radius r, and V
(n)
basis is the volume of the fundamental

region of the lattice under consideration. For layer n, the
lattice is a set of kn-dimensional complex vectors and V

(kn)
r

is computed as follows.

V (kn)
r =

πknr2kn

kn!
. (43)

In order to obtain the volume of the fundamental region
Vbasis, we consider layers N to M + 1 and layers M to 1
separately. For layers N to M + 1, according to [20], for a
real lattice with bases defined by the matrix Λ, the volume of
the fundamental region is computed as

Vbasis =
√
det(ΛTΛ), (44)

For the equivalent system described in (41), the matrix Un can
be regarded as the base matrix. Since the lattice of interests is
of complex value, we can convert it to a real one by using the
following equivalent real-valued representation of the complex
multiplication c = a · b[ R(c)

I(c)
]
=

[ R(a) −I(a)
I(a) R(a)

] [ R(b)
I(b)

]
, (45)

where a, b and c are complex numbers. The real-valued
equivalent representation of the complex matrix Um can be
obtained by replacing each element in Um with a 2×2 matrix,[ R(ui,j) −I(ui,j)

I(ui,j) R(ui,j)

]
, (46)

which yields a real matrix Ũm ∈ R2N×2N . For layer n, the
base matrix Ũn ∈ R2kn×2kn is the sub-matrix on the right
lower corner of Ũm.

Since the transmitted vector is normalized to ensure unit
transmit energy, a normalization factor αn is used to multiply
to the matrix Ũn. The volume of the fundamental region for
layer n can then be written as

V
(kn)
basis =

√
det(α2

nŨ
T
nŨn). (47)

The normalization factor is determined by the constellation
and lattice dimension. For example, αn = 1√

knEsym

, where

Esym is the average energy of symbols before power normal-
ization. The normalization factor αn is different from each
layers since the power of the vectors in each layer is different.

From (43) and (47), the approximated number of survival
nodes in layer n for the first stage of the proposed algorithm
can be calculated as

Sn−1 =
V

(kn)
rD

V
(kn)
basis

	 1

δn

πknr2kn

D

kn!
√

det(α2
nŨ

T
n Ũn)

,

for n = M + 1, · · · , N, (48)

where δn is an adjustment factor used to account for the fact
that the set of possible vectors is finite and it is different for
each layers.

During the second stage, which corresponds to the tree
search of the second part of the UD-MIMO system, if we
still calculate the fundamental region V

(kn)
basis by using (47),

then the value is usually very small, since the det(UH
mUm)

is proportional to βN . For layer N to M + 1, the problem
caused by small β is not serious because the contribution to
the overall metric is also related to β. However, for layer M
to 1, since these layers correspond to the full rank rows of
the Gram matrix, the value of det(UH

mUm) is too small to
describe the fundamental region.

In order to mitigate the effect of β, we rewrite the approx-
imation of V (kn)

basis as follows

V
(kn)
basis 	 1

βkn/2

√
det(α2

nŨ
T
n Ũn). (49)

Then the approximated number of the survival nodes in
layer n for the second stage is written as

Sn−1 =
V

(kn)
R

V
(kn)
basis

	 βkn/2

δn

πknR2kn

kn!
√
det(α2

nŨ
T
n Ũn)

, (50)

for n = 1, · · · ,M.

For the conventional GSD algorithm proposed in [11], eqn.
(48) and (51) still can be applied as approximations of the
number of survival nodes in each layer. Since the radius used
by the GSD algorithm is a constant R, we can just replace rD
in (48) with R.

Substituting Sn and Nn into (36) yields an approximation
of the number of arithmetic operations. It should be noted that
for the proposed algorithm, considering after the first stage of
the tree search, only NLSD paths with smallest metrics are
chosen as the candidate paths, we let SM = NLSD when
calculating the number of operations.

B. Numerical Analysis

In this subsection, numerical results are presented to demon-
strate the efficiency of the proposed algorithm. For the
proposed two-stage LSD algorithm, part of the complexity
reduction is achieved by using the proposed adaptive search
radius for layers N to M + 1, while the GSD algorithm
searches nearly all the possible paths in these layers.

Table I shows the number of the survival paths of each
layer for a 6×2 UD-MIMO system with 16QAM modulation
at Eb/N0 = 24.5 dB. The average number of the survival
paths is obtained through Monte-Carlo simulation as well
as by the approximation presented in Section V-A. For the
approximation, the parameter δn is chosen as δn = 24(kn−1)

for 3 ≤ n ≤ 6, δn = 64 for n = 2 and δn = 2 for n = 1. For
the GSD algorithm proposed in [11], nearly all the possible
paths of the first D layers are visited, which means that an
exhaustive search is performed over the first D layers. On
the other hand, for the proposed algorithm, some paths are
pruned from layer 5. Less than 25% paths survived at layer
3, which indicates that the exhaustive search is avoided. From
Table I we observe that the number of survival paths for layer
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TABLE I
THE NUMBER OF SURVIVAL PATHS OF EACH LAYER FOR 6× 2 UD-MIMO SYSTEM WITH 16QAM MODULATION AT Eb/N0 = 24.5 dB

Layer GSD, simulated GSD, approximated Proposed, simulated Proposed, approximated

6 16 16 16 15.81

5 256 256 233.41 239.75

4 4.10× 103 4.10× 103 2.60 × 103 2.37× 103

3 6.55× 104 6.55× 104 1.49 × 104 1.99× 104

2 3.81× 103 4.43× 103 3.81 × 103 4.57× 103

1 147.29 136.77 147.29 140.61

TABLE II
THE NUMBER OF SURVIVAL PATHS OF THE FIRST D LAYERS

Modulation Eb/N0 (dB) GSD proposed in [11] Proposed algorithm %

QPSK 10 256 59.42 23.21

8PSK 17 4093.33 516.85 12.63

16QAM 25 6.53× 104 1.47× 104 22.67

M to 1 is nearly the same for the GSD algorithm and the
proposed algorithm. This is due to the fact that we count all
the paths that satisfy the metric constraint in (20). However,
for the proposed algorithm, at most NLSD paths survive after
the first stage. Thus the actual number of survival paths at
layers M to 1 is less than that in Table I.

Table II shows the number of survival paths of the first
D layers for a 6 × 2 UD-MIMO system with different
constellations. The Eb/N0 was chosen to make sure that
the UD-MIMO system achieved a low BER on the order of
10−3. Results in Table II indicate that, the proposed algorithm
avoids the exhaustive search over the first D layers for
different constellations, thus significant complexity reduction
is achieved. Besides, since the average number of survival
paths is close to NLSD = 1

8Q
D, the complexity of the sorting

operation is also smaller than that of the GSD algorithm.
Table I and II indicate that, the complexity reduction of the

proposed algorithm mainly comes from the avoidance of the
exhaustive search over the first D layers. The probability of
missing the transmitted paths is also slightly higher than that
of the GSD algorithm, which causes a slight degradation of
the performance.

Figure 5 shows the ratio of the average number of arith-
metical operations of the proposed algorithm over that of the
GSD algorithm when M = 2. From Fig. 5, it is observed that
the complexity of the proposed algorithm is lower than that
of the GSD algorithm. The larger the values of D and Q are,
the more the benefit the proposed algorithm can provide. For
example, when D = 4, less than 1/2 of the GSD operations
are required for QPSK modulation while less than 1/5 of the
GSD operations are required for 8PSK. For 16QAM, this ratio
is reduced to 0.15. These results indicate that the order of the
complexity for the proposed algorithm is less than that of the
GSD algorithm.

The average numbers of arithmetic operations, including
multiplications and additions required in the tree search, of
different algorithms with 8PSK and 16QAM modulations are
shown in Fig. 6. The results in the figures were obtained by
counting and accumulating the number of arithmetic opera-
tions used during simulations. In Fig. 6(b), the approximated
numbers of arithmetic operations calculated by using the an-
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Fig. 5. The ratio of average number of mathematical operations of the
proposed algorithm over that of the GSD algorithm when fixed M = 2.

alytical expressions in the previous subsection is also plotted.
As expected, the proposed algorithm has lower complexity
than the GSD algorithm [11]. For 8PSK modulation, the
complexity of the proposed algorithm is about 1/5 of the
GSD algorithm while the performance loss is smaller than 0.1
dB. For 16QAM modulation, the complexity of the proposed
algorithm is only 1/10 of the GSD algorithm with a negligible
performance loss.

VI. CONCLUSIONS

In this paper, a two-stage LSD algorithm was proposed for
UD-MIMO systems with N transmit antennas and M < N
receive antennas. The proposed algorithm utilizes the unique
structure of the UD-MIMO channel matrix. The N detection
layers were divided into two groups. Layers 1 to M have a
similar structure as a symmetric MIMO system, and layers
M + 1 to N correspond to the extra signal dimensions in
an UD-MIMO system. A modified depth-first tree search was
applied to layers M + 1 to N to replace the exhaustive
search utilized by most other detection techniques for UD-
MIMO systems. A new method was proposed to adaptively
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Fig. 6. The average number of arithmetic operations for a 6×2 UD-MIMO
detector.

adjust the search radius of the depth-first tree search, such
that the overall complexity was significantly reduced while
maintaining a good performance. The depth-first tree search
with the conventional constraint radius was employed for
layers 1 to M to further reduce the complexity. Simulation
results and complexity analysis showed that the proposed
algorithm can achieve a similar performance as the GSD
algorithm but with a much lower complexity.

APPENDIX

Evaluation of Δ1 and Δ2

The contributions of the metric Δ1 and Δ2 to the overall
metric ΔD defined in (25) are evaluated here.

Decompose G−1
m and Um as

G−1
m =

(
Ḡ1 ḠH

2

Ḡ2 Ḡ3

)
, Um =

(
U1 U2

0D×M UD

)
. (51)

where Ḡ1 ∈ CM×M , Ḡ2 ∈ CD×M , Ḡ3 ∈ CD×D, U1 ∈
CM×M , U2 ∈ CM×D, and UD ∈ CD×D.

Based on the fact that G−1
m UH

mUm = IN , we have

(
Ḡ1 ḠH

2

Ḡ2 Ḡ3

)(
UH

1 U1 UH
1 U2

UH
2 U1 UH

2 U2 +UH
DUD

)
= IN (52)

The following equations are obtained from (52)

Ḡ2U
H
1 U1 + Ḡ3U

H
2 U1 = 0 (53)

Ḡ2U
H
1 U2 + Ḡ3U

H
2 U2 + Ḡ3U

H
DUD = ID. (54)

Since U1 is an upper-triangular matrix, Ḡ2U
H
1 =

−Ḡ3U
H
2 from (53). Substituting the result into (54) yields

Ḡ3U
H
DUD = I.

Define E = ḠH
DUH

DUDḠD. Based on the fact that
ḠD = [Ḡ2, Ḡ3] and the results from (53) and (54), E can be
decomposed as

E =

(
ḠH

2 UH
DUDḠ2 ḠH

2

Ḡ2 Ḡ3

)
. (55)

We are going to show next that, when β is small,
ḠH

2 UH
DUDḠ2 ≈ Ḡ1, or equivalently, E ≈ G−1

m .
From the decomposition in (51), the inverse of the upper

triangular matrix Um can be written as

U−1
m =

(
U−1

1 −U−1
1 U2U

−1
D

0 U−1
D

)
. (56)

Since G−1
m = (UH

mUm)−1, we have

G−1
m = U−1

m (U−1
m )H =(

U−1
1 (U−1

1 )H +TTH T(U−1
D )H

U−1
D TH U−1

D (U−1
D )H

)
, (57)

where T = −U−1
1 U2U

−1
D .

From (57), we have Ḡ1 = U−1
1 (U−1

1 )H+TTH , and Ḡ2 =
U−1

D TH . Therefore, the sub-matrix ḠH
2 UH

DUDḠ2 in (55)
can be expressed as

ḠH
2 UH

DUDḠ2 = T(U−1
D )HUH

DUDU−1
D TH = TTH . (58)

If β is small, for example, β = 10−6, then U−1
1 (U−1

1 )H is
negligible compared to TTH because U−1

1 is not affected by
β yet U−1

D in T is scaled by β−1/2. Therefore G1 	 TTH .
Based on (51), (55) and (58), we have E ≈ G−1

m .
Substituting E ≈ G−1

m into the definitions of Δ1 yields
Δ1 ≈ β

∑N
i=M+1 |x′

i|2 ≤ βmax
x∈SN

‖x‖2, where x′
i is the i-th

element of VHx, with V being a unitary matrix containing
the eigenvectors of Gm.

The metric Δ2 can be approximated by Δ2 ≈ Δ′
2 =

xHBHG−1
m HH

p w. The mean of Δ′
2 is 0. The variance of Δ′

2

is

E[|Δ′
2|2] = σ2

E
(
xHBHG−1

m GpG
−1
m Bx

)
(59)

Since B, Gm, and Gp share the same eigenvectors, it is
straightforward to show that BHG−1

m Gp = 0N×N . Thus
E[|Δ′

2|2] = 0 and Δ′
2 = 0. As a result, Δ2 ≈ 0.
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