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Abstract In this paper, we present a new Doppler spread

estimation algorithm for broadband wireless orthogonal

frequency division multiplexing (OFDM) systems with fast

time-varying and frequency-selective Rayleigh or Rician

fading channels. The new algorithm is developed by ana-

lyzing the statistical properties of the power of the received

OFDM signal in the time domain, thus it is not affected by

the influence of frequency-domain inter-carrier interfer-

ence (ICI) introduced by channel variation within one

OFDM symbol. The operation of the algorithm doesn’t

require the knowledge of fading channel coefficients,

transmitted data, or signal-to-noise ratio (SNR) at the

receiver. It is robust against additive noise, and can provide

accurate Doppler spread estimation with SNR as low as

0 dB. Moreover, unlike existing algorithms, the proposed

algorithm takes into account the inter-tap correlation of the

discrete-time channel representation, as is the case in

practical systems. Simulation results demonstrate that this

new algorithm can accurately estimate a wide range of

Doppler spread with low estimation latency and high

computational efficiency.

Keywords Auto-covariance � Doppler spread estimation �
OFDM

1 Introduction

Orthogonal frequency division multiplexing (OFDM) has

become the dominant information transmission technique

for a number of current and future wireless communication

systems [1–5]. OFDM is designed primarily for system

with quasi-static fading, i.e., the channel keeps constant

during at least one symbol duration. To meet the ever

increasing demand for broadband pervasive communica-

tions, OFDM systems designed for future wireless com-

munications are expected to operate in an environment

with high data transmission rate, high mobility, and high

carrier frequency. High speed broadband communication

dictates an operating environment of fast time-varying and

frequency-selective fading. Fast time-varying fading

introduces Doppler spread, which destroys the orthogo-

nality among subcarriers in OFDM and causes inter-carrier

interference (ICI), which is one of the main performance

degrading factors for OFDM systems [6–8].

On the other hand, Doppler spread contains information

about the key statistics of the wireless channel, and it

provides important guidance for system design. Doppler

spread has been utilized in single carrier systems for

adaptive handoff algorithm [9], energy-efficient routing for

mobile ad hoc networks [10], mobility and resource man-

agement for wireless multimedia networks [11], trajectory

prediction for wireless networks with mobile base stations

[12]. It has also been used in OFDM-based communication

systems for adaptive channel estimation [13, 14], adaptive

power control [15], and adaptive modulation and coding

(AMC) [16]. Therefore, a good estimation of Doppler
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spread is important for the design and implementation of

practical wireless communication systems.

Doppler spread estimation has received extensive

attentions for single carrier communication systems

[17–26]. However, there are very limited works on Doppler

spread estimation for OFDM systems [27, 28, 29, 30].

The Doppler spread estimation algorithms presented in

[27] and [28] require the knowledge of the channel state

information, which is usually difficult to extract, espe-

cially at high Doppler spread and low signal-to-noise ratio

(SNR). The Doppler spread estimation in these works are

performed by evaluating the auto-correlation functions of

the frequency-domain signal [27] and the time-domain

signal [28] at pilot tones. Since pilot tones only account

for a small percentage of transmitted signals, a large

number of OFDM blocks are required to extract the

necessary channel statistics. In addition, the performance

of the algorithm in [27] is negatively affected by ICI due

to its frequency-domain operation. In [29], Doppler

spread is estimated by extracting the correlation between

cyclic prefix (CP) and its data counterpart within one

OFDM symbol. Only the portion of the CP that has not

been corrupted by inter-symbol interference (ISI) can be

used for estimation. Since the uncontaminated part of the

CP might be very small, especially when the delay spread

of the channel is large, the applicability of the method in

practical systems is limited. In addition, it is pointed out

in [28] that the estimation accuracy of the CP-based

algorithm degrades significantly at low SNR. All of these

works assume a simplified discrete-time tapped-delay-line

channel model with uncorrelated channel coefficients. It

has been shown in [31] and [32] that the channel taps of

equivalent discrete-time representation of the fading

channel are actually correlated due to the time span of the

transmit filter and the receive filter, and this correlation

information is important for system design and evalua-

tion. Furthermore, to the best of our knowledge, all

existing algorithms are designed primarily for Rayleigh

fading channels and they are unable to provide satisfac-

tory Doppler spread estimation for frequency-selective

Rician fading channel.

In this paper, a new Doppler spread estimation algo-

rithm that does not suffer from any of the aforemen-

tioned limitations is proposed for broadband OFDM

systems operating under doubly-selective (time-selective

and frequency-selective) Rayleigh and Rician fading

channels. The estimation is performed by collecting sta-

tistics from all the received time-domain signals. Unlike

previous methods, the new algorithm does not require

pilot symbols, and can operate at the presence of both

unknown channel coefficients and unknown data sym-

bols. It is robust to ICI and additive noise, and can

provide accurate estimation of the Doppler spread even

when the SNR is as low as 0 dB. In addition, the

channel tap correlation of the equivalent discrete-time

system representation is considered during the develop-

ment of the algorithm. Simulation results show that the

new algorithm provides accurate and high-efficiency

estimation of the Doppler spread over a wide range of

system configurations.

The remainder of this paper is organized as follows.

Section 2 presents the discrete-time model of the OFDM

system and preliminary statistical properties of the chan-

nel. In Sect. 3, the key statistics of the received time-

domain signal are investigated, and the results are used to

facilitate the development of the Doppler spread estima-

tion algorithm. Based on the theoretical results in Sect. 3,

a practical high-efficiency low-latency Doppler spread

estimation algorithm is developed in Sect. 4. Simulation

results are presented in Sect. 5, and Sect. 6 concludes the

paper.

2 System Model and Assumptions

Consider an OFDM system with a block diagram shown in

Fig. 1. For the ith ði 2 Z
þÞ OFDM symbol, a set of N

modulated symbols, sðiÞ ¼ ½sðiÞ0 ; . . .; s
ðiÞ
N�1�

T 2 SN�1; with S
being the modulation alphabet and (�)T denoting the

transpose operator, are multiplexed onto N orthonormal

subcarriers, and the obtained time-domain samples, x(i)(n),

can be expressed as

xðiÞðnÞ ¼ 1
ffiffiffiffi

N
p

X

N�1

k¼0

s
ðiÞ
k ej2p

N kn;�Np � n \ N þ Nq ð1Þ

where Np and Nq are the lengths of cyclic prefix and cyclic

postfix, respectively. Cyclic prefix and postfix are used to

remove the ISI introduced by the causal part and non-

causal part of the equivalent channel [32].

The modulated complex symbols, s
ðiÞ
k , are assumed to be

zero-mean complex random variables with independent

real part and imaginary part, and the cross-correlation

between two modulation symbols is

E s
ðiÞ
k1

s
ðjÞ
k2

h i�n o

¼ dðk1 � k2Þdði� jÞ ð2Þ

where Ef�g represents the operation of mathematical

expectation, d(�) is the Kronecker delta function, and (�)*

stands for complex conjugate. The assumption is valid for a

wide range of modulation schemes such as M-ary phase

shift keying (MPSK), M-ary quadrature amplitude modu-

lation (MQAM), etc.

The time-domain samples, x(i)(n), are passed through a

transmit filter, pT(s), and then transmitted over the time-

varying physical fading channel with impulse reponsse

gc(t, s). At the receiver, the received time-domain signal is
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passed through a receive filter, pR(s). Define the continu-

ous-time composite channel impulse response (CIR) as

hcðt; sÞ ¼ pTðsÞ � gcðt; sÞ � pRðsÞ ð3Þ

where aðsÞ � bðt; sÞ ¼
R

bðt; aÞaðs� aÞda represents

convolution of time-varying signals. For system

experiencing Rician fading, the physical channel gc(t, s)

can be modeled as [33]

gcðt; sÞ ¼
gðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ K
p þ

ffiffiffiffiffiffiffiffiffiffiffiffi

K

1þ K

r

hLOSðtÞdðsÞ ð4Þ

where K is the Rice factor, g(t, s) is wide-sense stationary

uncorrelated scattering (WSSUS) [34] Rayleigh fading

component with normalized unit energy, and the line-of-

sight (LOS) component is expressed by hLOSðtÞ ¼
expðj2pfdt cos h0 þ j/0Þ with fd being the maximum

Doppler spread, and h0 and /0 being the angle of arrival

and the initial phase, respectively. It’s assumed that h0 and

/0 are uniformly distributed over (-p, p].

At the receiver, the output of the receive filter is sampled

at a rate of 1/Ts, where Ts is the symbol period. After the

removal of cyclic prefix and cyclic postfix, the received

time-domain samples can be represented as [32]

yðiÞðnÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ K
p

X

L2

l¼�L1

hðiÞðn; lÞxðiÞðn� lÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi

K

1þ K

r

h
ðiÞ
LOSðnÞ

X

P2

p¼�P1

qpxðiÞðn� pÞ þ vðiÞðnÞ

ð5Þ

where yðiÞðnÞ,yððði� 1ÞNs þ nÞTsÞ is the nth sample of the

ith received OFDM symbol, with n ¼ 0; 1; . . .;N � 1, and

Ns ¼ Np þ N þ Nq is the number of samples within one

OFDM symbol including the prefix and postfix. The

additive white Gaussian noise (AWGN) sample vðiÞðnÞ has

zero mean and variance r2. The channel coefficients,

hðiÞðn; lÞ,hððði� 1ÞNs þ nÞTs; lTsÞ
� �L2

l¼�L1
; are the dis-

crete-time version of the continuous-time non-line-of-sight

(NLOS) component hðt; sÞ ¼ pRðsÞ� g ðt; sÞ � pTðsÞ, with

the non-negative integers, L1 and L2 determined by the

transmit filter, receive filter, and channel power delay

profile (PDP) [32]. The discrete-time version of the LOS

component is denoted by h
ðiÞ
LOSðnÞ,hLOSððði� 1ÞNs þ

nÞTsÞ: The effects of the transmit filter and receive filter on

the LOS component is contained in the coefficient,

qp ¼
R1
�1 pTðsÞpRðpTs � sÞds, for p ¼ �P1; . . .;P2, with

the non-negative integers P1 and P2 determined by the

transmit and receive filters. For energy normalized transmit

and receive filters, we have
PP2

p¼�P1
q2

p ¼ 1: Specifically,

qp ¼ dðpÞ for filters satisfying Nyquist criterion. It should

be noted that, with the insertion of cyclic prefix and postfix,

the signal samples, yðiÞðnÞ
� �N�1

n¼0
, contains information

contributed only from xðiÞðnÞ
� �N�1

n¼0
of the ith transmitted

OFDM symbol.

Due to the time span of the transmit filter and the receive

filter, the discrete-time NLOS channel is generally non-

causal, and the channel coefficients hðiÞðn; lÞ
� �L2

l¼�L1
are

mutually correlated across the delay-domain l, even though

the underlying physical channel is causal and experiences

uncorrelated scattering. The NLOS coefficients form a

wide-sense stationary zero mean complex Gaussian ran-

dom process with the auto-correlation function given by

[32]

Efhði1Þðn1; l1Þ½hði2Þðn2; l2Þ��g ¼ Cl1;l2 J0f2pfd½ði1 � i2ÞNs

þ ðn1 � n2Þ�Tsg
ð6Þ

where Cl1;l2 is the inter-tap correlation, J0(�) is the zero-

order Bessel function of the first kind, and fd is the maxi-

mum Doppler spread. The value of Cl1;l2 is determined by

the transmit filter, the channel power delay profile, and the

,

Fig. 1 OFDM system model

(only y(i)(n) is used during

Doppler spread estimation)
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receive filter. For energy normalized composite channel,

we have
PL2

l¼�L1
Cl;l ¼ 1:

3 Algorithm Development Based on Time-Domain

Signal Statistics

In this section, theoretical analysis is performed to inves-

tigate the key second-order and fourth-order statistics of

the received time-domain signal, y(i)(n), and the results are

used to facilitate the development of the Doppler spread

estimation algorithm.

3.1 Statistics of the Received Signals

Define the auto-correlation of the received time-domain

signal, y(i)(n), and the auto-correlation of the received

signal power, |y(i)(n)|2, as

Ryyðs; u; n;mÞ,E yðsþuÞðnþ mÞ yðsÞðnÞ
h i�n o

ð7aÞ

Rjyj2jyj2ðs; u; n;mÞ,E jy
ðsþuÞðnþ mÞj2jyðsÞðnÞj2

n o

ð7bÞ

where s 2 Z
þ and u 2 Z are OFDM symbol index and

index difference, and n and m are time instant and time lag

in samples, respectively.

Substituting (1) and (5) into (7), we have the auto-cor-

relations expressed in (8) and (9). It should be noted that the

identities, J0 2pfd uNs þ mð ÞTs½ �dðuÞ ¼ J0ð2pfdmTsÞdðuÞ,
and cos 2pfd uNs þ mð ÞTs cos h0½ �dðuÞ ¼ cosð2pfdmTs cos h0Þ
dðuÞ, are used in the derivation of (8) and (9). The proofs for

(8) and (9) are delegated to the Appendix. Observing (8) and

(9) reveals that both y(n) and jyðnÞj2 are wide-sense sta-

tionary since they are functions of the OFDM symbol index

difference u and the time lag m, while independent of the

starting OFDM symbol index s and the starting time instant

n. Therefore, we denote Ryyðs; u; n;mÞ by Ryyðu;mÞ and

Rjyj2jyj2ðs; u; n;mÞ by Rjyj2jyj2ðu;mÞ in the sequel unless

specified otherwise.

Ryyðs; u; n;mÞ ¼
1

Nð1þ KÞ
X

L2

l1¼�L1

X

L2

l2¼�L1

X

N�1

k¼0

"

Cl1;l2 J0ð2pfdmTsÞej
2pðl2�l1þmÞk

N

þ K

Nð1þ KÞ
X

P2

p1¼�P1

X

P2

p2¼�P1

X

N�1

k¼0

qp1
q�p2

� ej2pfdmTs cos h0 ej
2pðp2�p1þmÞk

N þ r2dðmÞ
#

dðuÞ

ð8Þ

Rjyj2jyj2ðs; u; n;mÞ ¼
1þ 2r2 þ r4 þ 2r2dðmÞdðuÞ þ r4dðmÞdðuÞ

þ J2
0 2pfd uNs þ mð ÞTs½ �
ð1þ KÞ2

X

L2

l1¼�L1

X

L2

l2¼�L1

jCl1;l2 j
2

þ 2KJ0 2pfd uNs þ mð ÞTs½ � cos 2pfd uNs þ mð ÞTs cos h0½ �
ð1þ KÞ2

�
X

L2

l1¼�L1

X

L2

l2¼�L1

X

P2

p1¼�P1

X

P2

p2¼�P1

l1¼p1;l2¼p2

Cl1;l2q
�
p1

qp2

þ 1

ð1þ KÞ2N2

X

L2

l1¼�L1

X

L2

l2¼�L1

X

L2

l3¼�L1

X

L2

l4¼�L1

X

N�1

k1¼0

X

N�1

k2¼0

k1 6¼k2

Cl1;l2 Cl3;l4 þ Cl1;l4 C�l2;l3 J2
0ð2pfdmTsÞ

h i

� ej
2p k1ðmþl4�l1Þ�k2ðmþl3�l2Þ½ �

N dðuÞ

þ K

ð1þ KÞ2N2

X

L2

l1¼�L1

X

L2

l2¼�L1

X

P2

p1¼�P1

X

P2

p2¼�P1

X

N�1

k1¼0

X

N�1

k2¼0

k1 6¼k2

Cl1;l2qp1
q�p2

� ej
2p k1ðm�l1þp2Þ�k2ðm�l2þp1Þ½ �

N þ ej
2p k1ðm�p1þl2Þ�k2ðm�p2þl1Þ½ �

N

� �

dðuÞ

þ 2KJ0ð2pfdmTsÞ cosð2pfdmTs cos h0Þ
ð1þ KÞ2N2

X

L2

l1¼�L1

X

L2

l2¼�L1

X

P2

p1¼�P1

X

P2

p2¼�P1

X

N�1

k1¼0

X

N�1

k2¼0

k1 6¼k2

Cl1;l2q
�
p1

qp2

� ej
2p k1ðmþl2�l1Þ�k2ðmþp2�p1Þ½ �

N dðuÞ

þ K2

ð1þ KÞ2N2

X

P2

p1¼�P1

X

P2

p2¼�P1

X

P2

p3¼�P1

X

P2

p4¼�P1

X

N�1

k1¼0

X

N�1

k2¼0

k1 6¼k2

qp1
q�p2

qp3
q�p4

ej
2p k1ðmþp4�p1Þ�k2ðmþp3�p2Þ½ �

N dðuÞ:
ð9Þ

Setting u ¼ 0;m ¼ 0 in (8), we have Ryyð0Þ,Ryyðu ¼
0;m ¼ 0Þ as

Ryyð0Þ ¼
1

Nð1þ KÞ
X

L2

l1¼�L1

X

L2

l2¼�L1

X

N�1

k¼0

Cl1;l2 ej
2pðl2�l1Þk

N

þ K

Nð1þ KÞ
X

P2

p1¼�P1

X

P2

p2¼�P1

X

N�1

k¼0

rp1
r�p2

ej
2pðp2�p1Þk

N þ r2

¼1þ r2:

ð10Þ

Thus, the auto-covariance of the received signal power can

be written as
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Vjyj2jyj2ðu;mÞ ¼ Rjyj2jyj2ðu;mÞ � E
2 yðsÞðnÞ
�

�

�

�

2
h i

¼ Rjyj2jyj2ðu;mÞ � ð1þ r2Þ2:
ð11Þ

The statistics described in (8), (9) and (11) are expressed as

functions of the Doppler spread fd. However, the expres-

sions of the statistics are extremely complicated, thus it

would be rather difficult, if not impossible, to directly

extract the values of fd based on these expressions. To

facilitate the development of the Doppler spread estimation

algorithm, we have the following three remarks on the

signal statistics.

Remark 1 From (8), we observe that signals from dif-

ferent OFDM symbols, i.e., u = 0, are always uncorrelated

regardless of the value of m. This observation is intuitive

since signals within one OFDM symbol are independent

from adjacent OFDM symbols due to the presence of cyclic

prefix and cyclic postfix. For the case u = 0, the auto-

correlation of the received signal samples within one

OFDM symbol interval is also zero if L \ |m| \ N - L,

where L = L1 ? L2, , because both of the triple summation

terms in (8) are zeros in this case. For other values of m, the

value of Ryyðu ¼ 0;mÞ is involved with m in a very com-

plicated way as evident in (8). Therefore, the auto-corre-

lation function, Ryyðu;mÞ, is not a good candidate for

Doppler spread estimation.

Remark 2 When u = 0, the auto-correlation and auto-

covariance of the received signal power in (9) and (11) can

be simplified as follows

Rjyj2jyj2ðu;mÞ ¼1þ 2r2 þ r4 þ J2
0 ½2pfdðuNs þ mÞTs�
ð1þ KÞ2

�
X

L2

l1¼�L1

X

L2

l2¼�L1

jCl1;l2
j2

þ 2KJ0½2pfdðuNs þ mÞTs� cos½2pfdðuNs þ mÞTs cos h0�
ð1þ KÞ2

�
X

L2

l1¼�L1

X

L2

l2¼�L1

X

P2

p1¼�P1

X

P2

p2¼�P1

l1¼p1;l2¼p2

Cl1;l2
q�p1

qp2

ð12Þ

Vjyj2jyj2ðu;mÞ ¼
J2

0 ½2pfdðuNs þ mÞTs�
ð1þ KÞ2

X

L2

l1¼�L1

X

L2

l2¼�L1

jCl1;l2 j
2

þ2KJ0½2pfdðuNs þ mÞTs� cos½2pfdðuNs þ mÞTs cos h0�
ð1þ KÞ2

�
X

L2

l1¼�L1

X

L2

l2¼�L1

X

P2

p1¼�P1

X

P2

p2¼�P1

l1¼p1;l2¼p2

Cl1;l2q
�
p1

qp2
:

ð13Þ

It is worth pointing out that the expression in (13) is

independent of the AWGN variance r2.

Remark 3 Comparing (9) and (11) with (12) and (13), we

can see that there are complicated extra terms involving fd
in the expressions of the auto-correlation and auto-covari-

ance of the signal power when u = 0 as compared to the u

= 0 case. Since it’s extremely difficult to evaluate the

extra terms, the u = 0 case is not a desirable candidate for

Doppler spread estimation.

Based on the analysis above, we conclude that the auto-

covariance of signal power evaluated at u = 0 is the most

suitable candidate for Doppler spread estimation. Compared

to other cases, Vjyj2jyj2ðu;mÞ at u = 0 has two advantages.

First, it is directly related to the maximum Doppler spread

in an expression that is easy to analyze. Second, the effect of

AWGN is completely removed, and this is highly desirable

for the design of a robust estimation algorithm.

3.2 Doppler Spread Estimation

We are now in a position to develop the Doppler spread

estimation algorithm based on the auto-covariance given in

(13). Denote

a ¼ 1

ð1þ KÞ2
X

L2

l1¼�L1

X

L2

l2¼�L1

jCl1;l2 j
2; ð14aÞ

b ¼ 2K

ð1þ KÞ2
X

L2

l1¼�L1

X

L2

l2¼�L1

X

P2

p1¼�P1

X

P2

p2¼�P1

l1¼p1;l2¼p2

Cl1;l2q
�
p1

qp2
; ð14bÞ

z ¼ 2pfdðuNs þ mÞTs; ð14cÞ

then (13) can be written in a compact form as

Vjyj2jyj2ðzÞ ¼ aJ2
0ðzÞ þ bJ0ðzÞ cosðz cos h0Þ: ð15Þ

Since the values of a and b are unknown, (15) cannot be used

directly for the estimation of the Doppler spread fd. Instead,

we resort to the normalized auto-covariance defined as

VNðg; zÞ,
Vjyj2jyj2ðgzÞ
Vjyj2jyj2ðzÞ

¼ aJ2
0ðgzÞ þ bJ0ðgzÞ cosðgz cos h0Þ
aJ2

0ðzÞ þ bJ0ðzÞ cosðz cos h0Þ
;

ðg [ 1 integerÞ ð16Þ

where the integer parameter g can be adjusted to achieve

better estimation accuracy. When g is properly chosen such

that gz is small, second-order approximations, J0ðxÞ� 1�
x2=4 and cosðxÞ � 1� x2=2, can be employed, and this

leads to the following approximation

VNðg; zÞ

� a½1� ðgzÞ2=4�2 þ b½1� ðgzÞ2=4�½1� ðgz cos h0Þ2=2�
að1� z2=4Þ2 þ bð1� z2=4Þ½1� ðz cos h0Þ2=2�

:

ð17Þ
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To further simplify the representation, replacing cos2 h0

with its expectation E cos2 h0

� �

¼ 0:5; we are able to

cancel the two unknown parameters, a and b, from the

expression of VN(g, z), and the result is

VNðg; zÞ �
½1� ðgzÞ2=4�2

ð1� z2=4Þ2
: ð18Þ

The solution of z from (18) is

z ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� UNðg; zÞ
g2 � UNðg; zÞ

s

ð19Þ

where UNðg; zÞ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VNðg; zÞ
p

: Let u = 1, m = 0, then

z ¼ 2pfdNsTs, and the estimation of the Doppler spread is

obtained as

~fd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�UNðg;zÞ
g2�UN ðg;zÞ

q

pNsTs
¼ F1ðg; zÞ

pNsTs
ð20Þ

where

F1ðg; zÞ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� UNðg; zÞ
g2 � UNðg; zÞ

s

: ð21Þ

It should be noted that other values of u and m can also be

used in Doppler spread estimation without affecting the

estimation accuracy. In this paper, however, we fix z ¼
2pfdNsTs without loss of generality.

Similarly, if we employ fourth-order approximations:

J0ðxÞ � 1� x2=4þ x4=64 and cosðxÞ � 1� x2=2þ x4=24,

and note the fact that E cos4 h0

� �

¼ 3
8
; then

from which z can be solved as

z ¼ 2
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � UNðg; zÞ � ðg2 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UNðg; zÞ
p

g4 � UNðg; zÞ

s

: ð23Þ

The Doppler spread estimation using fourth-order

approximation can then be obtained from (23) as

f̂d ¼

ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2�UN ðg;zÞ�ðg2�1Þ
ffiffiffiffiffiffiffiffiffiffiffi

UN ðg;zÞ
p

g4�UN ðg;zÞ

r

pNsTs
¼ F2ðg; zÞ

pNsTs
ð24Þ

where

F2ðg; zÞ,
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 � UNðg; zÞ � ðg2 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UNðg; zÞ
p

g4 � UNðg; zÞ

s

: ð25Þ

When an estimate of the Doppler spread is obtained, the

mobile speed can be calculated from Doppler spread as

v ¼ fdc=fc, where c is the speed of light and fc is the carrier

frequency.

Compared to existing algorithms, the newly proposed

method has the following advantages. First, the estimation

of the Doppler spread doesn’t require the knowledge of

fading channel coefficients or transmitted data symbols.

Thus, all of the received signals, including both unknown

data and known pilot, can be used in the estimation. Sec-

ond, the effect of additive noise is removed in the esti-

mation process due to the employment of the auto-

covariance of the received signal power. Third, the channel

inter-tap correlation, which is present in practical systems,

is taken into account during the estimation process. Fourth,

the estimation is performed over time-domain signals, thus

it is not affected by the ICI in frequency domain.

4 A Practical Doppler Estimation Algorithm

Based on the theoretical analysis presented in Sect. 3, a

practical Doppler spread estimation algorithm with low

estimation latency and high computation efficiency is

presented in this section.

From the theoretical estimators given in (20) and (24),

the proper operation of the Doppler estimation algorithm

requires the knowledge of the auto-covariance function,

Vjyj2jyj2ðu;mÞ; which can be approximated using time

average. To obtain an accurate time-averaged approxima-

tion of the auto-covariance function, long data sequences

are needed. This will result in long estimation delay with

high computational complexity. To keep the estimation

latency small while achieve satisfactory estimation reli-

ability, we pass the received signal power, pðiÞðnÞ ¼
jyðiÞðnÞj2, through a low pass filter to suppress the effects of

VNðg; zÞ �
a½1� ðgzÞ2=4þ ðgzÞ4=64�2 þ b½1� ðgzÞ2=4þ ðgzÞ4=64�½1� ðgz cos h0Þ2=2þ ðgz cos h0Þ4=24�

að1� z2=4þ z4=64Þ2 þ bð1� z2=4þ z4=64Þ½1� ðz cos h0Þ2=2þ ðz cos h0Þ4=24�

¼ ½1� ðgzÞ2=4þ ðgzÞ4=64�2

ð1� z2=4þ z4=64Þ2
;

ð22Þ
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AWGN and power fluctuations. The filtered signal power

can be represented by

p̂ðiÞðnÞ ¼
X

Lf

l¼0

f ðlÞpðiÞðn� lÞ ð26Þ

where Lf and f(l) are the order and coefficient of the low

pass filter, respectively.

The time-averaged approximation of the auto-covari-

ance function can then be calculated by using the filtered

signal power from M consecutive OFDM symbols, and the

result is

V̂ jyj2jyj2ðu;mÞ ¼
1

ðM � uÞðN � mÞ
X

M�u

i¼1

X

N�m�1

n¼0

� ½p̂ðiþuÞðnþ mÞ � �p�½p̂ðiÞðnÞ � �p� ð27Þ

where �p ¼ 1
MN

PM
i¼1

PN�1
n¼0 p̂ðiÞðnÞ is the time average of the

signal power.

In addition to the auto-covariance function, another key

parameter required for Doppler spread estimation is the

integer g as shown in (20) and (24). The selection of g

depends on two factors: first, gz should be small such that

approximations in (18) and (22) still hold; second, for a

given Doppler spread fd, or z ¼ 2pfdNsTs, the normalized

auto-covariance, VNðg; zÞ, should not be too close to 1,

such that enough information can be collected from

VNðg; zÞ for Doppler spread estimation. To meet both of the

two objectives, the value of g should adapt roughly

according to the variation of Doppler spread. Therefore, we

classify the Doppler spread into three categories, ‘‘low’’,

‘‘medium’’, and ‘‘high’’, and different values of g are used

for each of the three categories.

Classification of Doppler spread is performed at the

receiver by using the normalized auto-covariance of the

received signal power. In (11), when u = 0, we choose a

value m such that Tm ¼ mTs is less than 30 ls, then

J0ð2pfdmTsÞ� 1 and cosð2pfdmTs cos h0Þ � 1 even if fd is

as high as 500 Hz. In this case, the auto-covariance

Vjyj2jyj2ðu ¼ 0;mÞ tends to a constant value irrelevant to fd.

We denote this constant as Vjyj2jyj2ðTmÞ: Further, choose

u = u0, such that Tblk ¼ u0Tsym� 5 ms, where Tsym ¼ NsTs

is the time duration of one OFDM symbol including cyclic

prefix and postfix. Similarly, define Vjyj2jyj2ðTblkÞ,
Vjyj2jyj2ðu ¼ u0;m ¼ 0Þ: Then, the classification of Doppler

spread can be achieved as follows

Vjyj2jyj2ðTblkÞ
Vjyj2jyj2ðTmÞ

[ 0:95; low;
\0:3; high;

otherwise; medium:

8

<

:

ð28Þ

where the classification thresholds, 0.95 and 0.3, are chosen

for illustration purpose only. Other threshold values can be

obtained through optimization for different levels of

‘‘low’’, ‘‘high’’, and ‘‘medium’’.

Based on the Doppler spread classification given in (28),

the value of g corresponding to each category is

g ¼
10u0; low;

u0; medium;
d0:1u0e; high:

8

<

:

ð29Þ

The values used in (29) are obtained based on empirical

simulation results.

With the approximated auto-covariance function in (27)

and the values of g given in (29), the Doppler spread can be

estimated by substituting (27) and (29) into (20) or (24)

with second-order and fourth-order approximations,

respectively. The practical Doppler spread estimation

algorithm is summarized as follows.

Step 1. Choose {m, u0, M} such that mTs\30 ls; Tblk ¼
u0Tsym � 5 ms, and MTsym\1 s.

Step 2. Compute Vjyj2jyj2ðTmÞ and Vjyj2jyj2ðTblkÞ: Classify

Doppler spread as ‘‘low’’, ‘‘medium’’ or ‘‘high’’ accord-

ing to (28), and select g based on (29).

Step 3. Compute V̂ jyj2jyj2ðzÞ and V̂ jyj2jyj2ðgzÞ with different

values of g from (29), then obtain Doppler spread

estimations ~fd and f̂d according to (20) and (24) as follows:

~fd ¼

F1ð10u0;zÞ
pNsTs

; low;
F1ðu0;zÞ
pNsTs

; medium;
F1ðd0:1u0e;zÞ

pNsTs
; high:

8

>

>

<

>

>

:

ð30Þ

f̂d ¼

F2ð10u0;zÞ
pNsTs

; low;
F2ðu0;zÞ
pNsTs

; medium;
F2ðd0:1u0e;zÞ

pNsTs
; high:

8

>

>

<

>

>

:

ð31Þ

Step 4. Take the average of ~fd and f̂d in (30) and (31) as

the final Doppler spread estimation �fd ¼ ðf̂d þ ~fdÞ=2:

5 Simulation

In this section, the performance of the proposed Doppler

spread estimation algorithm is evaluated by performing

simulations in a DVB-H system [2].

In the simulation, one OFDM symbol excluding cyclic

prefix and postfix has a time duration of Tu = 224 ls.

Sampling interval is Ts ¼ Tu=N, where the value of N is

2048 corresponding to the 2K-mode of DVB-H system.

The lengths of the cyclic prefix and cyclic postfix are set as

Np ¼ Nq ¼ N=8 ¼ 256. One OFDM frame consists of 68

OFDM symbols, and four frames form one super-frame.

The transmit filter, pTðsÞ, and the receive filter, pR(s), are

normalized square root raised cosine filter with roll-off
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factor 0.3. The power delay profile of the wireless physical

fading channel has 120 uncorrelated taps with tap space

being Ts/2. The average power of the first 40 taps ramps up

linearly and the last 80 taps ramps down linearly. The

equivalent Ts-spaced composite discrete-time channel,

h(n, l), has 63 correlated taps. The noise-suppression low

pass filter has 50 taps, and u0 = 20 is selected in (29) based

on the above system configuration.

We first study the estimation performance in Rayleigh

fading channel with Rice factor K = 0. The mean and

standard deviation of the estimated Doppler spreads

obtained with the proposed algorithm are shown in Fig. 2

for a system with 64QAM modulation. For each Doppler

spread, the estimation is performed over Nf = 24 consec-

utive OFDM frames, which correspond to a time duration

less than 0.5 s. It’s clear from the figure that the proposed

algorithm provides accurate and reliable estimation of the

Doppler spread for SNR as low as 0 dB. More accurate

estimations can be achieved at higher SNR. Similar

observation is obtained for system with 8PSK modulation

as shown in Fig. 3, which is obtained by using the same

parameters as in Fig. 2 except the modulation scheme.

Comparing Figs. 2 and 3, we conclude that the proposed

estimation algorithm is insensitive to modulation schemes.

In Fig. 4, the normalized standard deviations of the

estimated Doppler spreads are plotted as a function of the

number of OFDM frames, Nf, used in one estimation. It is

clearly shown that the standard deviations are within 10%

of the true Doppler spreads. As expected, the estimation

standard deviation decreases when more OFDM frames are

used during the estimation. This is intuitive because more

frames lead to a better time-averaged approximation of the

auto-covariance function.

The simulation results for Rician fading with 64QAM

modulation are presented in Fig. 5. The Rice factor is fixed

at K = 5, and the Rician channel simulator in [33] is used

for the generation of Rician fading during simulation.

Comparing the results in Figs. 2 and 5, we can see that the

estimation accuracy in Rician fading channel is slightly

worse compared to the Rayleigh case. The performance

degradation is mainly caused by the approximations of

cos(x) and cos2(h0) used in the derivation of (18) and (22)

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Actual Doppler Spread (Hz)

M
ea

n 
of

 E
st

im
at

ed
 D

op
pl

er
 S

pr
ea

d 
(H

z)

Rayleigh fading, 64QAM Modulation

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

Actual Doppler Spread (Hz)

S
T

D
 o

f E
st

im
at

ed
 D

op
pl

er
 S

pr
ea

d 
(H

z)

Rayleigh fading, 64QAM Modulation

SNR=−5dB
SNR=0dB
SNR=15dB

SNR=−5dB
SNR=0dB
SNR=15dB

Fig. 2 Doppler spread

estimation for frequency-

selective Rayleigh fading

channel with 64QAM

modulation

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Actual Doppler Spread (Hz)

M
ea

n 
of

 E
st

im
at

ed
 D

op
pl

er
 S

pr
ea

d 
(H

z)

Rayleigh fading, 8PSK Modulation

SNR=−5dB
SNR=0dB
SNR=15dB

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

Actual Doppler Spread (Hz)

S
T

D
 o

f E
st

im
at

ed
 D

op
pl

er
 S

pr
ea

d 
(H

z)

Rayleigh fading, 8PSK Modulation

SNR=−5dB
SNR=0dB
SNR=15dB

Fig. 3 Doppler spread

estimation for frequency-

selective Rayleigh fading

channel with 8PSK modulation

204 Int J Wireless Inf Networks (2009) 16:197–208

123



for Rician fading channel. Such approximations are not

required in Rayleigh fading channel. Even though the

estimation accuracy in Rician fading channel is slightly

worse compared to the Rayleigh case, the algorithm can

still obtain a very accurate estimation of the Doppler spread

and the estimation accuracy improves with the increase of

SNR, as expected. Similar results are obtained for other

modulation schemes and this corroborates that the pro-

posed method is insensitive to modulation schemes.

The impact of Rice factor on the performance of the

estimation algorithm is investigated in Fig. 6, where the

standard deviation of the estimated Doppler spread is

shown as a function of Rice factor K at different values of

the Doppler spread. Systems with 8PSK modulation are

used in this example. It can be seen from the figure that the

estimation accuracy degrades as K increases. As analyzed

before, the performance degradation is mainly due to extra

approximations involved in the LOS component of the

fading during the estimation process.

6 Conclusions

An accurate low-latency Doppler spread estimation algo-

rithm was presented in this paper for OFDM systems with

fast time-varying frequency-selective Rayleigh and Rician

fading. The algorithm doesn’t require pilots in the trans-

mitted signal, and was developed by analyzing the statis-

tical properties of received signals containing unknown

transmitted data symbols and unknown channel fading. The

estimation was performed with the auto-covariance func-

tion of the power of the received time-domain signals.

Since the algorithm operates in the time domain, its
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performance is not affected by the ICI in the frequency

domain. In addition, a practical algorithm was proposed for

accurate and high-efficiency Doppler spread estimation.

Extensive simulations have shown that the new algorithm

works well for doubly-selective Rayleigh and Rician fad-

ing channels at SNR as low as 0 dB.
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Appendix

Proof of (8) and (9)

The auto-correlation function of the received time-domain

OFDM signal is calculated as

where x(i)(n) defined in (1) is used in the derivation of the

last equality, thus (8) is proved.

The proof of Eq. 9 relies on the following two identities:

Efv1v2v3g ¼ 0 and Efv1v2v3v4g ¼ Efv1v2gEfv3v4g þ
Efv1v3gEfv2v4g þ Efv1v4gEfv2v3g; where v1; v2; v3 and

v4 are zero-mean Gaussian random variables. With the

above identities, (9) can be derived based on the definition

of auto-covariance function. The derivation process is

extremely lengthy and tedious, but straightforward, thus

the details are omitted here for brevity.
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