
A Modified Fixed Sphere Decoding Algorithm for
Under-Determined MIMO Systems

Chen Qian∗, Jingxian Wu†, Yahong Rosa Zheng‡, Zhaocheng Wang∗
∗Tsinghua National Laboratory for Information Science and Technology (TNList),
Dept. of Electronic Engineering, Tsinghua University, Beijing 100084, P.R.China

†Dept. of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
‡Dept. of Electrical & Computer Eng., Missouri University of Science & Technology, Rolla, MO 65409, USA

Abstract—A modified FSD algorithm is proposed for under-
determined (UD) multiple-input multiple-output (MIMO) sys-
tems with N transmit antennas and M < N receive antennas.
This paper focuses on the low-complexity detection of coded UD-
MIMO systems with iterative turbo detection, where a soft-input
soft-output (SISO) MIMO detector exchanges soft information
with a SISO decoder. In the first iteration, a modified fixed com-
plexity sphere decoding (FSD) method is developed by utilizing
the structure of a UD-MIMO system. The modified FSD employs
a new detection ordering scheme that has a lower complexity
but a better performance compared to the conventional ordering
scheme. From the second iteration and beyond, the MIMO
detector is implemented with a generalized serial interference
cancelation (GSIC) scheme and a block decision feedback e-
qualizer (BDFE) to further reduce the complexity. Simulation
results show that the newly proposed FSD-GSIC-BDFE structure
can achieve significant performance gains over existing schemes,
especially for systems with high level modulations.

I. INTRODUCTION

An under-determined (UD) linear system has more unknown
variables than the number of equations or observations. It can
be used to model a wide variety of wireless communication
systems, e.g., a spatial multiplexing multiple-input multiple-
output (MIMO) system with N transmit anteannas and M <
N receive antennas, and the uplink of a infrastructure based
wireless network where a N wireless nodes transmit to a base
station with M < N antennas, etc. This paper focuses on the
low-complexity detection of coded UD-MIMO systems, and
the results can be easily extended to other UD communication
systems or networks.

The optimum solution of the UD-MIMO system can be
obtained through exhaustive search of the set QN , where Q is
the modulation level. However, the complexity of the optimum
detection grows exponentially with Q and N . A large number
of low complexity detection methods have been proposed for
symmetric (N = M ) or over-determined (N < M ) MIMO
systems, such as the optimum sphere decoding (SD) [1] with
maximum likelihood (ML) detection, the sub-optimum fixed-
complexity sphere decoding (FSD) [2] and [3], and the vertical
Bell laboratories layered space-time (V-BLAST) [4]. All of
the above schemes cannot be directly applied to a UD-MIMO
system because they would require the inverse of a rank
deficient matrix in the UD-MIMO system.

Several sub-optimum methods have been proposed to solve
the UD-MIMO system with affordable complexity. A gen-

eralized parallel interference cancelation (GPIC) is proposed
in [6], where exhaustive search is performed over the extra
N − M signal dimensions. The exhaustive search generates
QN−M parallel symmetric sub-systems, and V-BLAST is used
in each sub-system. A generalized sphere decoding (GSD)
scheme is proposed in [7] by combining GPIC with SD in
the parallel sub-systems. In [8], the metric calculation of
sphere decoding is modified to avoid the inversion of a rank
deficient matrix, but the method works only for constant-
modulo constellation.

Recently, turbo detection is investigated in [9] for coded
UD-MIMO system, where the soft-input soft-output (SISO)
MIMO detector iteratively exchanges soft information with
a SISO decoder. The SISO-MIMO detector is implemented
by utilizing GPIC with block decision feedback equalization
(BDFE) in the first iteration and a new generalized serial
interference cancelation (GSIC) with BDFE in all the other
iterations. The system works well for low level modulations,
and its performance deteriorates rapidly as the modulation
level increases.

In this paper, we propose an efficient MIMO detector
for coded UD-MIMO systems with high level modulations.
A modified SISO FSD algorithm is developed by tailoring
towards the structure of UD-MIMO systems. The modified
FSD algorithm divides the transmit antennas into two groups,
such that the group with signals of lower signal-to-noise ratio
(SNR) will undergo an exhaustive tree search and the group
with the stronger signals will go through a low complexity
constrained tree search. Therefore, channel ordering is much
simplified in comparison to the conventional FSD scheme [2].
The modified FSD algorithm is used in the first iteration of
the turbo detection, and the GSIC-BDFE is used in subsequent
iterations to futher reduce the complexity. The GSIC-BDFE
orders the symbols based on a reliability estimation, which is
calculated from the a priori input and is dynamically updated
as the iterations progress. For low level modulation systems
as studied in [9], symbols with higher reliability are detected
firstly by treating those with lower reliability as interference.
We propose to reverse this order for high level modulation
systems, such that symbols with lower reliability will be
used in interference cancelation firstly to reduce the residual
interference. Simulation results show that the newly proposed
FSD-GSIC-BDFE scheme outperforms existing schemes by 2
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dB in flat-fading UD-MIMO channel.

II. SYSTEM MODEL

Fig. 1 shows the block diagram of a UD-MIMO system
with N transmit antennas and M < N receive antennas.
Independent N bit streams, {an}Nn=1, are encoded by convo-
lutional encoders to generate the coded bit streams, {bn}Nn=1,
which are then interleaved by pseudo-random interleavers
to get the interleaved bit streams, cn = Π(bn), for n =
1, · · · , N , where Π(·) is the interleaving operator. Every K
bits in a coded bit stream are grouped and mapped to a
modulation symbol following a modulation constellation set
Q = {χq}Qq=1 with cardinality Q = 2K . The modulated
symbols, x = [x1, · · · , xN ]T ∈ SN×1, are transmitted on N
transmit antennas.

The signals sampled at the M receive antennas can be
represented as

y = Hx+ v (1)

where y = [y1, · · · , yM ]T ∈ CM×1 and v = [v1, · · · , vM ]T ∈
CM×1 represent the received signal and the additive white
gaussian noise (AWGN), respectively, with [·]T denoting the
matrix transpose operation. The matrix H ∈ CM×N , is the
flat-fading MIMO channel matrix, with the (m,n)-th element,
hm,n, being the channel coefficient between the n-th transmit
antenna and the m-th receive antenna.

Turbo detection is employed at the receiver, which consists
of a SISO-MIMO detector and N SISO convolutional decoder-
s, separated by deinterleavers and interleavers as shown in Fig.
1. The optimum maximum a posteriori (MAP) algorithm is
employed by the convolutional decoders. The decoder and the
equalizer exchange soft extrinsic information iteratively to im-
prove the performance. The SISO-MIMO detector calculates
the a posteriori log-likelihood ratio (LLR) of cn,k, the k-th
bit from the n-th transmit antenna, as,

Ln,k
D1 = LD1(cn,k|y) = ln

P (cn,k = 0|y)
P (cn,k = 1|y)

(2)

which is used to generate the extrinsic LLR as Ln,k
E1 =

LE1(cn,k) = LD1(cn,k|y) − L
(n,k)
A1 . The extrinsic LLR,

L
(n,k)
E1 , at the output of the SISO-MIMO detector is then de-

interleaved as L
(n,k)
A2 = Π−1(L

(n,k)
E1 ), which is used as the a

priori input to the MAP decoder. The extrinsic information
at the output of the MAP decoder, L(n,k)

E2 , is interleaved into
L
(n,k)
A1 = Π(L

(n,k)
E2 ), which is used as the a priori input to the

SISO-MIMO detector at the next iteration. In the first iteration,
LA1(cn,k) = 0 because there is no a priori information. It is
assumed that the receiver knows the channel matrix H exactly.

III. A NEW FSD-BASED SISO-MIMO DETECTOR

In this section, a new FSD-based SISO-MIMO detector is
proposed for UD-MIMO systems. FSD is a simplified version
of the SD algorithm [1]. The conventional FSD is designed
for symmetric or over-determined MIMO systems [2]. We will
develop a modified FSD algorithm based on the structures of
UD-MIMO systems.
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Fig. 1. Turbo-MIMO transceiver block diagram.

A. The Modified FSD Algorithm for UD-MIMO Systems

Similar to the conventional SD and FSD algorithms, the
modified FSD algorithm performs detection by searching a
subset of a tree structure. The tree has N layers, and each
layer represents a transmit antenna. Denote the root layer as
layer N , and the leaf layer as layer 1. Each node on the tree
has Q branches leading to Q child nodes, with each branch
representing a possible symbol from the constellation set Q.
A path from a leaf node on layer 1 leading up to the root node
represents a possible transmitted vector x ∈ QN×1. The full
tree structure has QN leaf nodes, therefore there are QN paths
from the leaf nodes to the root node. The ML detection will
exhaustively search all the QN paths on the tree. The SD-based
algorithms, on the other hand, will search a small subset of the
paths in the tree structure around the received signal vector.
Details of the modified FSD tailored for UD-MIMO systems
are given as follows.

The modified FSD consists of three steps: channel ordering,
tree search, and LLR calculation. In channel ordering for the
conventional FSD designed for over-determined or symmetric
MIMO systems, the columns of the channel matrix H are
permutated based on a certain order as Hp = [hp1 , · · · ,hpN ]
such that transmit antenna pk corresponds to the k-th layer.
However, for UD-MIMO systems, the channel matrix H is
rank-deficient thus the channel ordering scheme is no longer
applicable to UD-MIMO systems. A new channel ordering
scheme is proposed in this paper and detailed information will
be presented in the next subsection.

In tree search, the permuted channel matrix Hp is used to
generate the zero-forcing estimate of the symbol vector as

x̂ = H†
py = [x̂1, x̂2, · · · , x̂N ]T . (3)

where H†
p = (HH

p Hp)
−1HH

p is the pseudo-inverse of Hp,
with [·]H denoting matrix Hermitian.

The zero-forcing estimate x̂ is used as a starting point of the
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tree search, which attempts to compute the following metric

∆ = ∥U(x− x̂)∥2 =

N∑
i=1

u2
ii|xi − zi|2, (4)

where x = [x1, · · · , xN ]T is one of the QN possible paths
from the root to a leaf, with xi being the symbol on the i-th
layer, and

zi = x̂i −
N∑

j=i+1

uij

uii
(xj − x̂j). (5)

The matrix U = {uij} ∈ CN×N is an upper-triangular
matrix calculated through the Cholesky decomposition of a
diagonal-loaded Gram matrix Ḡ = HH

p Hp + βIN as follows

Ḡ = HH
p Hp + βIN = UHU, (6)

where β is a small positive number, and IN is a size-N
identity matrix. The original Gram matrix, G = HH

p Hp, is
rank-deficient in a UD-MIMO system. Therefore, G is not
positive definite and the Cholesky decomposition does not
exist. Adding a small positive number β to the diagonal of
G generates a positive definite approximation of G, and this
makes the Cholesky decomposition in (6) possible. The effect
of β can be considered as adding some noise to the system,
and the performance loss due to the extra noise is negligible
if β is small enough, e.g., β = 10−6.

Instead of exhaustively calculating the metrics for all the
QN paths, the FSD only calculates the metrics of a subset of
pathes by searching over the tree layer-by-layer. The search
starts from the N -th layer at the root of the tree, and it follows
a breadth-first approach, i.e., all the metrics at the same layer
are calculated and compared before moving on to the next
layer. A large number of branches are pruned during the search
and only a subset of branches or pathes survive before moving
on to the next layer.

Consider a parent node at the i-th layer and on the k-th
survival path, the distance metric of the branch from this parent
node to one if its Q child nodes is

dik(χq) = u2
ii|χq − zik|2, χq ∈ S (7)

where zik = x̂i −
∑N

j=i+1
uij

uii
(xjk − x̂j), with xjk being the

symbol at the j-th layer and on the k-th survival path. The
ML detection will keep all the Q paths originating from the
same parent node, and use them as the parent nodes for the
next layer. The FSD, on the other hand, orders {dik(χq)}Qq=1

in an ascending order and only keep the first ni ≤ Q paths as
the survival paths. Therefore, the number of survival paths of
FSD at the i-th layer is (ni × ni+1 · · · × nN ).

The vector nS = [n1, · · · , nN ]T is called node distribution.
After searching the entire tree, the total number of survival
paths is K =

∏N
i=1 ni, and the accumulated metric for the

k-th path is computed as ∆k =
∑N

i=1 dik(xik), where xik

denotes the survival symbol of the k-th path at the i-th layer.
Among the K survival paths, only ν paths with the smallest
metrics ∆k are selected as the final survival paths for LLR

calculation. The choice of the node distribution and the number
of final survival paths ν affect the performance and complexity
tradeoff of the FSD algorithm. If n1 = · · ·nN = Q and ν =
QN , then the FSD degrades to the regular ML detection. The
node distribution and the number of final survival paths can
be chosen such that K << QN and ν < K to significantly
reduce the complexity of metric ∆k and LLR calculation, yet
still maintain a performance that is very close to that of the
optimum ML detection.

In a UD-MIMO system, the values of uii, for i = M +
1, · · · , N , are usually very small due to the rank deficient
structure of G. As a result, the SNR on layers M + 1 to N
are very low. Due to the low SNR, it is very likely that the
global optimum path might have unfavorable local metrics at
these layers, and is discarded if one or more of these layers use
a small ni. This will degrade the overall system performance
even if all the subsequent layers use larger ni. To address this
problem, we propose to preserve the full structure of the tree
from layers M +1 to N , i.e., ni = Q for i = M +1, · · · , N .
This corresponds to exhaustive tree search at layers M + 1
to N to ensure that the optimum path is preserved in these
layers. The complexity reduction is achieved at layers 1 to
M , where {ni}Mi=1 can choose values less than Q to reduce
the complexity.

Therefore, we divide the tree structure of a UD-MIMO
system into two parts. The top part, from layers M + 1
to N (root), utilizes an exhaustive tree search. The bottom
part, from layers 1 (leaf) to M , employs a constrained tree
search by choosing ni < Q at these layers. It will be shown
by simulations that such a two-part tree search algorithm
can achieve a performance that is very close to its optimum
counterpart, but with a much lower complexity.

At the end of the tree search, the accumulated metrics of
the K survival paths, {∆k}Kk=1, are ordered from low to
high as ∆o1 ≤ · · ·∆ok , where [o1, · · · , ok] is a permuta-
tion of [1, · · · ,K]. Define a set that contains the survival
paths with the smallest metrics as P = {pok}νk=1, where
pok = [x1ok , · · · , xNok ]

T is the symbol vector of the ok-th
path. The set P is the output of the tree search algorithm.

Once the set P is obtained, the LLR at the output of the
modified FSD is calculated as follows

LE1(cn,k|y) = ln

∑
x∈Pk,0

exp(−||y−Hx||2
σ2/2 )∑

x∈Pk,1
exp(−||y−Hx||2

σ2/2 )
(8)

where LE1(cn,k|y) is the soft extrinsic information of the k-
th bit transmitted by the n-th transmit antenna, and the sets
Pk,b is a subset of P , such that it contains all the vectors with
cn,k = b, for b = 0, 1. The complexity of (8) can be reduced
significantly with the max-log-map approximation [11].

B. A New Channel Ordering Scheme for the Modified FSD
In this subsection, we proposed a new channel ordering

scheme designed specifically for the modified FSD in a UD-
MIMO system. Compared to the conventional ordering scheme
proposed in [3], the new scheme has a lower complexity but
a better performance.
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In the modified FSD algorithm for a UD-MIMO system, the
layers are divided into two groups, where exhaustive search
is performed in the first group that contains layers M + 1 to
N , and low complexity constrained search is performed in the
second group that contains layers 1 to M . The motivation
behind such a partition is that layers M + 1 to N have
relatively low SNRs. Therefore, one important objective of the
channel ordering is the partition of the layers based on their
respective reliability, such that layers M + 1 to N have the
lowest reliability. In the first iteration, a priori information
is not available, so the ordering is based on the channel
condition. Since the Cholesky decomposition of the diagonal-
loaded Gram matrix is used during the tree search, we propose
to measure the channel reliability by using the norms of the
columns of the Gram matrix G = HHH.

The new channel ordering is as follows:
1) Calculate the gram matrix as G = HHH.
2) Calculate the norms of the columns of G: ∥gi∥, i =

1, · · · , N , where gi is the i-th column of G.
3) Sort the norms {∥gi∥}Ni=1 in a descending order, such

that gp1 ≥ · · · ≥ gpN .
4) Obtain the ordered channel matrix Hp =

[hp1 , · · · ,hpN
].

It is noted that the relative orders among layers M + 1 to
N have no effect on the performance because exhaustive tree
search is performed on each of these N −M layers.

C. Second Iteration and Beyond: GSIC-BDFE

The proposed modified FSD is used in the first itera-
tion. From the second iteration and beyond, the GSIC-BDFE
scheme [9] is employed to further reduce the complexity.

The columns of the channel matrix H is first permutated
based on the symbol reliability measured from the a priori
input, then the permuted channel matrix Hp is partitioned
into D = ⌈N

M ⌉ symmetric or over-determined sub-systems
as follows:

y =
D∑

d=1

Hdxd + v (9)

where Hd = [hd1 , · · · ,hdM
] ∈ CM×M , if 1 ≤ d ≤ D − 1,

and HD = [hD1 , · · · ,hD′
M
] ∈ CM×M ′

, with dk = p(d−1)M+k

and M ′ = N − (D − 1)M .
The D sub-systems are equalized serially with sub-system

D being equalized first and sub-system 1 equalized last. The
SISO BDFE of sub-system d is performed over the following
equivalent system

y(d) = y −
d−1∑
j=1

Hjx̄j −
D∑

j=d+1

Hjx̂j (10)

where {x̄j}d−1
j=1 is the a priori mean calculated from the a

priori information from the previous iteration, and {x̂j}Dj=d+1

is the a posteriori soft decisions of the sub-systems that have
been processed in the current iteration.

Since the GSIC-BDFE is employed after the first iteration,
the symbol reliability is measured by using an a priori

reliability metric αn = 1
σ2
xn

, where σ2
xn

is the a priori variance
of the symbol xn at the GSIC-BDFE input. A larger αn means
a higher reliability. In [9], the columns of the channel matrix
are ordered in an ascending order based on the reliability
factor αn. This ordering scheme is proposed for low level
modulations such as binary phase shift keying (BPSK), but it
does not work well for high level modulations.

We propose to reverse the detection order in GSIC-BDFE
with high level modulations, i.e., order the reliability measure
from high to low, such that the sub-system containing the
columns with the lowest reliability measures are detected first.
The a priori information generated from the previous iteration
contributes to the detection in the d-th sub-system from two
aspects: 1) the a priori information of symbols in the d-th sub-
system is used to formulate the BDFE filters; 2) the a priori
information of symbols in sub-systems 1 to (d − 1) is used
for soft interference cancelation as shown in (10). For high
level modulations, intuitively the reliability of SIC is more
critical because a less reliable serial interference cancelation
(SIC) will lead to large residual interferences due to a larger
constellation size. Ordering the reliability measure from high
to low means the soft decisions in sub-systems 1 to d−1 have
higher reliability than those in sub-system d. Such an ordering
scheme will maximize the reliability of SIC, thus improve the
reliability of the d-th sub-system’s a posteriori soft decisions,
which are also used for the SIC for sub-systems 1 to d−1. The
above discussions are verified through the simulation results.

IV. COMPLEXITY ANALYSIS

In this section, the complexity of the proposed FSD-GSIC-
BDFE scheme is compared to that of the conventional GPIC-
GSIC-BDFE in [9]. The analysis is based on the number
of complex multiplications. Since both schemes use similar
operations after the first iteration, the complexity comparison
in the first iteration is studied.

The computational complexity of the proposed scheme
is mainly contributed by two sources, the channel ordering
and the tree search. The LLR calcuation has a much lower
complexity because the number of survival paths at the end of
the tree search is usually small, and it can employ the max-
log-map simplification to further reduce the complexity.

The conventional channel ordering scheme proposed in [3]
requires the inversion of N size N×N matrices. This results in
a complexity in the order of O(N4). The new ordering scheme
proposed in this paper requires the multiplication between
a N × M matrix and a M × N matrix, and N complex
multiplications for the norm calculation. The total number of
complex multiplications due to ordering is thus MN2 +N2.

Before the tree search, we calculate the zero-forcing esti-
mate as in (4), and perform the Cholesky decomposition to get
U as in (6). These two operations require ( 13N

3 + 2MN2 +
2N2 +MN) complex multiplications.

The tree search calculates the metrics of survival paths as in
(7) along a constrained tree structure. The number of complex
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multiplications incurred by this operation is

N∑
l=1

(
N∏

m=l

nm + (N − l)
N∏

m=l+1

nm) (11)

where the term
∏N

m=l nm corresponds to the calculation in
(7), and the term (N − l)

∏N
m=l+1 nm corresponds to the

calculation of zik. The number of multiplications in (11) is
a little different from the calculation in [2] because we only
consider the number of complex multiplications instead of real
multiplications.

The complexity of the conventional GPIC-BDFE scheme
are contributed by three parts: the permutation of channel
matrix H, the formulation of the BDFE filters [9, eqn. (6)],
and the BDFE filtering operation [9, eqn. (7)]). The ordering
and permutations of the column of H rely on the calculation
of the norms of the rows of the pseudo-inverse of H, and
the total number of complex multiplications incurred by these
operations is 1

3N
3 + MN2 + 2N2 + MN . The formulation

of the BDFE filters require a Cholesky decomposition of a
M × M matrix, and several matrix multiplications. It incurs
8
3M

3 + 5M2 complex multiplications. The BDFE filtering in
one sub-system requires M2 complex multiplications, and the
filtering process needs to be performed for J = QN−M sub-
systems.

The complexity of the proposed algorithm is higher than that
of the conventional GPIC-BDFE. For example, when M =
2, N = 6 for QPSK modulation, and ns = [1 2 4 4 4 4] is used
as node distribution, the number of complex multiplications for
the proposed scheme is 6954 while the number of complex
mulitplications for the GPIC-BDFE scheme is 1848. It will
be demonstrated by simulation that the proposed scheme can
achieve significant performance gains over the original GPIC-
BDFE at the cost of complexity.

V. SIMULATION RESULTS

Simulations are performed to verify the performance of the
newly proposed FSD-GSIC-BDFE scheme in a UD-MIMO
system with N = 6 transmit antennas and M = 2 receive
antennas. The information bits are encoded with a rate 1/2
systematic convolutional code with the generator polynomial
G = [7, 5]8. The block length is 1024. The flat-Rayleigh-
fading MIMO channel model is employed.

The bit-error rate (BER) results for quadrature-phase shift
keying (QPSK) and eight-phase shift keying (8PSK) are shown
in Figs. 2 and 3, respectively. The node distributions for the
QPSK and 8PSK modulated systems are [1 3 4 4 4 4] and
[1 4 8 8 8 8], respectively. The number of survival paths after
the tree search is ν = 16 for both configurations.

The proposed FSD-GPIC-BDFE scheme achieves signifi-
cant performance gains over the conventional GPIC-GSIC-
BDFE scheme, for both QPSK and 8PSK systems. If we
consider the results from the 5-th iteration, the proposed
scheme outperforms the GPIC-GSIC-BDFE by 2.2 dB at the
BER = 10−3 for the QPSK system, and by 4.0 dB at the
BER = 10−3 for the 8PSK system. In addition, the results
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Fig. 2. Simulation results of QPSK encoded system with N = 6 and M = 2.
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Fig. 3. Simulation results of 8PSK encoded system with N = 6 and M = 2.

of the FSD-GSIC-BDFE scheme employing the conventional
ordering scheme in [3] are also shown in the figures. The new
ordering scheme consistently outperforms the conventional
ordering scheme in all system configurations. For the QPSK
system, the performance gain of the new ordering system
is about 0.1 dB; the performance gain increases to about
0.2 dB for the 8PSK system. It should be noted that the
newly proposed ordering scheme has a much lower complexity
compared to the original ordering scheme. It can be concluded
from these results that the proposed FSD-GSIC-BDFE scheme
can achieve higher performance gains for systems with high
level modulations.
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VI. CONCLUSIONS

A new FSD-based method was proposed for the turbo
detection of coded UD-MIMO systems. The modified FSD
was used in the first iteration, and a GSIC-BDFE method
was adopted in the subsequent iterations. The modified FSD
partitioned the N layers of a tree structure into two groups,
and exhaustive search was used for the first group of N −M
layers, and low complexity constrained search was used for the
second group of M layers. The layer partition and ordering
are performed with a new ordering scheme that has less
complexity but better performance than the ordering scheme
in the conventional FSD. Complexity analysis and simulation
results demonstrated that the proposed scheme achieves sig-
nificant performance gains over existing schemes, at the cost
of increase in complexity. The performance improvement is
more pronounced for systems with higher modulation levels.

VII. ACKNOWLEDGMENT

The work of Chen Qian and Zhaocheng Wang was sup-
ported by National High Technology Research and Develop-
ment Program of China (Grant No. 2012AA011704), National
Natural Science Foundation of China (Grant No. 61271266)
and Tsinghua National Laboratory for Information Science and
Technology (TNList). The work of Yahong Rosa Zheng was
supported in part by National Science Foundation of the USA
under Grant ECCS-0846486 and by Office of Naval Research
under Grant N00014-09-1-0011. The work of Jingxian Wu was
supported in part by the National Science Foundation of the
USA under Grant ECCS-0917041 and ECCS-1202075. The
authors would like to thank Dr. Mingxi Wang for his help on
implementing the fixed sphere decoding algorithm.

REFERENCES

[1] U. Fincke and M. Pohst, “Improved methods for calculating vectors of
short length in a lattice, including a complexity analysis,” Math. Comput.,
vol. 44, pp. 463C471, Apr. 1985.

[2] L. G. Barbero and J. S. Thompson, “Extending a Fixed-Complexity
Sphere Decoder to Obtain Likelihood Information for Turbo-MIMO
Systems,” IEEE Trans. Veh. Technol, vol. 57, no. 5, pp. 2804-2814, Sept.
2008.

[3] L. G. Barbero and J. S. Thompson,“Fixing the Complexity of the Sphere
Decoder for MIMO Detection,” IEEE Trans. Wireless Commun., vol. 7,
no. 6, pp. 2131 - 2142, Jun. 2008.

[4] G. J. Foschini, “Layered Space-time Architecture for Wireless Commu-
nication in a Fading Environment When Using Multiple Antennas,” Bell
Lab. Tech. J., vol. 1, pp. 41-59, 1996.

[5] D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “MMSE
Extension of V-BLAST Based on Sorted QR Decomposition,” in Proc.
IEEE Vehicular Technol. Conf., 2003, vol. 1, pp. 508-512.

[6] Z. Luo, S. Liu, M. Zhao, and Y. Liu, “Generalized parallel interference
cancellation algorithm for V-BLAST systems,” Proc. IEEE Int. Conf.
Commun., 2006, pp. 3207-3212.

[7] M. Damen, K. Abed-Meraim, and J. C. Belfiore, “ Generalised Sphere
Decoding for Asymmetrical Space-time Communication Architecture,”
Electronics Lett., vol. 36, pp. 166-167, Jan. 2000.

[8] Tao Cui and Chintha Tellambura, “An Efficient Generalized Sphere
Decoder for Rank-Deficient MIMO Systems,” IEEE Commun. Lett., vol.
9, no. 5, pp. 423-425, May. 2005.

[9] Michael L. Walker, Jun Tao, Jingxian Wu, and Yahong Rosa Zheng, “Low
complexity turbo detection of coded under-determined MIMO systems,”
in Proc. IEEE Int. Conf. Commun. 2011, Jun. 2011.

[10] J. Wu and Y. R. Zheng, “ Low Complexity Soft-input Soft-output Block
Decision Feedback Equalization,” IEEE J. Select. Areas. Commun., vol.
26, no. 2, pp. 281-289, Feb. 2008.

[11] P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of Optimal
and Sub-optimal MAP Decoding Algorithms Operating in the Log
Domain,” in Proc. IEEE Int. Conf. Commun. 1995, pp. 1009-1013, 1995.

4487


