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Abstract—The energy efficient design of coded automatic-
repeat-request (ARQ) systems is studied in this paper. The opti-
mization aims to minimize the energy required for the successfully
delivery of one information bit from a transmitter to a receiver.
The design is performed by incorporating a wide range of practical
system parameters and metrics, such as hardware power consump-
tion, modulation, channel coding, and frame error rate (FER)
in the physical layer, and frame length and protocol overhead
in the media access control layer. A new log-domain threshold
approximation method is proposed to analytically quantify the
impacts of the various system parameters on the FER, and the
results are used to facilitate the system design. The optimum
transmission energy and frame length that minimize the energy
per information bit are identified in closed-form expressions
as functions of the various practical system parameters. The
analytical and simulation results demonstrate that the total energy
consumption in a coded ARQ system can be reduced by increasing
the transmission energy during one transmission attempt, and
significant energy saving as high as 9.5 dB is achieved with the
optimum system.

I. INTRODUCTION

Energy efficient communication can extend the battery life

of communication terminals, reduce the energy cost, and make

the communication process more environmental friendly.

A large number of energy efficient communication tech-

niques have been developed in the physical (PHY) layer [1]

and [2] and the media access control (MAC) layer [3]–[7].

Most PHY layer energy efficient communication techniques are

developed by exploiting the trade-off between power efficiency

and spectral efficiency through various coding, modulation, and

signal processing techniques [1] and [2]. In the MAC layer, the

energy consumption can be reduced in a number of ways, such

as decreasing the transmission duty cycle [3] and [4], carefully

scheduling the transmissions to reduce or avoid collisions [5]

and [6], or power controls [7], etc.

Most schemes are developed by following the traditional

layered-protocol design approach, and they do not directly take

advantage of the interactions among the protocol layers that

might be critical to energy efficient communications [8]. A

cross-layer power-rate-distortion framework is proposed in [9]
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by considering the trade-off among source distortion, data rate,

and hardware complexity, but with an assumption of error-

free channel. A PHY/MAC cross-layer design is considered

in [10], where the optimum power assignment for the hybrid

automatic-repeat-request (H-ARQ) technique in fading channel

is studied to reduce the total average power consumption. The

optimization in [10] is performed under the constraint of a

targeted outage probability, and it does not consider the effects

of practical system parameters such as overhead, modulation,

data rate, and bit error rate (BER), etc.

In this paper, we propose a new optimum design of practical

ARQ systems to minimize the energy required to successfully

deliver an information bit from a transmitter to a receiver

through a Rayleigh fading channel. The optimization incorpo-

rates a large number of practical system parameters that cover

the operations in the hardware, the PHY layer, and the MAC

layer, such as the efficiency of the power amplifier, the power

consumption of digital hardware, data rate, modulation, frame

length, frame error rate (FER), and the protocol overhead, etc.

The system design is performed by jointly optimizing the

transmission energy in the PHY layer and the frame length

in the MAC layer. For a system employing ARQ, a lower

transmission energy does not necessarily mean less total energy

consumption, because it might increase the number of retrans-

missions, thus the total energy required to successfully deliver

a frame. On the other hand, increasing the transmission energy

beyond its optimum operation point will result in a waste of

the energy resource. Similarly, a longer frame usually means a

higher FER, yet a shorter frame has poor overhead efficiency.

To quantify the impacts of transmission energy and frame

length, a new log-domain threshold approximation is proposed

to build an explicit analytical relationship between the FER

and the design parameters. The optimum transmission energy

and frame length are expressed as closed-form expressions of

the various practical system parameters. The analytical and

simulation results demonstrate that significant energy savings

are achieved through the optimization.

II. SYSTEM MODEL

Consider a transmitter and a receiver separately by a distance

d. The information bits at the transmitter are divided into

frames. Each frame has L uncoded information bits and L0

overhead bits. The information bits and overhead bits from the
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transmitter are encoded with a channel encoder with code rate

r. For a system employing M-QAM, the number of symbols in

each frame is Ls =
L+L0

r log2 M , where L is chosen in a way such

that Ls is an integer.

The m-th symbol observed at the receiver is

ym =
√
Erhmxm + zm, for m = 1, 2, · · · , Ls, (1)

where Er is the average energy of a symbol at the receiver,

xm ∈ S is the m-th modulated symbol transmitted, S is the

modulation constellation set with the cardinality M = |S|, ym,

hm, and zm are the received sample, the fading coefficient

between the transmitter and the receiver, and additive white

Gaussian noise (AWGN) with single-sided power spectral den-

sity N0, respectively. It is assumed that the system undergoes

quasi-static Rayleigh fading, such that the fading coefficient is

constant within one frame, and changes from frame to frame.

Define the average Eb/N0 of an uncoded information bit at

the receiver as

γb �
Eb

N0
=

Er

rN0 log2 M
. (2)

For a transmitter and receiver pair separated by a distance

d, the average transmission energy for each symbol at the

transmitter can be modelled as [1]

Es = ErG1d
κMl, (3)

where κ is the path-loss exponent, G1 is the gain factor

(including path-loss and antenna gain) at a unit distance, and Ml

is the link margin compensating the hardware process variations

and other additive background noise or interference.

In addition to the actual transmission energy, we also need

to consider the circuit energy per symbol that can be modelled

as [1],

Ec =

(
ξM

η
− 1

)
Es +

β

Rs
, (4)

where Rs = 1
Ts

is the gross symbol rate, η is the drain

efficiency of the power amplifier, ξ
M is the peak-to-average

power ratio (PAPR) of an M -ary modulation signal, β in-

corporates the effects of baseband processing, such as signal

processing, encoding and modulation. For M-ary quadrature

amplitude modulated (MQAM) systems with square constel-

lations, ξ
M

� 3(
√
M − 1√

M
+ 1) for M ≥ 4 [11].

From (2), (3), and (4), the energy required to transmit one

information bit during one transmission attempt is

E0 =
Ls

L
(Es + Ec) =

L+ L0

L

γbξMN0Gd

η
+

β

Rb
, (5)

where Gd = G1d
κMl, and Rb = L

Ls
Rs is the net bit rate of

the uncoded information bit.

Due to the effects of channel fading and noise, the receiver

might not be able to successfully recover the transmitted signal.

The probability that a transmitted frame cannot be recovered

equals to FER, which is a function of the γb at the receiver, the

frame length Ls, the modulation level M , and the channel code.

The packet will be retransmitted if the transmitter receive a

negative acknowledgement (NACK). Since the retransmissions

are independent, the number of retransmissions is a geometric

random variable with the parameter FER. The average number

of retransmissions is thus

Λ =
1

1− FER
. (6)

The total energy required to successfully deliver an infor-

mation bit from the transmitter to the receiver can then be

calculated by Et = ΛE0, which can be expanded by combining

(5) and (6) as

Et =
1

1− FER

[
L+ L0

L

γbξM
N0Gd

η
+

β

Rb

]
. (7)

The total energy per information bit Et relies on a number

of system parameters, including Eb/N0 at the receiver γb, the

number of information bits L and the number of overhead bits

L0 per frame, the modulation level M , the net data rate Rb, and

the FER that inherently depends on all the above parameters

and the code rate r, etc.

The value of γb has two opposite effects on Et. On one hand,

FER is a decreasing function in γb. Therefore, increasing γb will

decrease the average number of retransmissions Λ, thus reduce

Et. On the other hand, E0 is a strictly increasing function in

γb, thus it translates a positive relationship between γb and Et.

A similar observation can also be obtained for the relation-

ship between Et and L. Λ translates a positive relationship

between Et and L because FER is an increasing function in L
for a given channel code and modulation scheme, whereas E0

is a decreasing function in L.

Therefore, it is critical to identify the optimum values of γb
and L that can achieve minimal energy per information bit.

III. OPTIMUM SYSTEM DESIGN

The optimum system design that can minimize Et under the

constraints of fixed M , Rb and L0 are studied in this section.

A. FER with a Log-Domain Linear Threshold Approximation

In this subsection, an accurate approximation of the FER

of coded systems in quasi-static Rayleigh fading is obtained

with the threshold-based method originally presented in [12].

Furthermore, we propose a new log-domain linear approxima-

tion method for the calculation of the threshold value required

for the FER approximation. The threshold-based method with

the newly proposed log-domain linear approximation explicitly

build a connection between the FER and the various system

parameters.

With the threshold-based method [12], the FER of a coded

system in a quasi-static Rayleigh fading channel can be accu-

rately approximated by

FER � 1− exp

(
−γω
γb

)
, (8)

where γω is a threshold value that can be calculated as

γω =

[∫ ∞

0

1− FERG(γ)

γ2
dγ

]−1

, (9)
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Fig. 1. γω as a function of L+ L0

where FERG(γ) is the FER in an AWGN channel.

Fig. 1 shows γω as a function of L + L0 under various

modulation schemes. The channel code is a rate r = 1
2

convolutional code with the generator polynomial [5, 7]8 and

constraint length 3. It is observed from the figure that γω can

be modelled as a linear function of log(L+L0), with the slope

and intercept determined by the different modulation schemes.

Similar linear relationships are also observed for other channel

codes. Therefore, we propose to model γω as

γω � kM log(L+ L0) + bM , (10)

where kM and bM are the slope and intercept determined by

the modulation scheme and the actual channel code. The value

of k
M and bM can be estimated by performing the least squares

(LS) method on the results in Fig. 1. For the M = 4, we have

k4 = 0.3744 and b4 = −0.31.

Combining (8) and (10) leads to a new FER approximation

FER � 1− (L+ L0)
− k

M
γb exp

(
−b

M

γb

)
. (11)

Fig. 2 compares the actual FER obtained through simulation

with the corresponding analytical approximation by using (11),

under different values of L + L0, for systems with M = 4.

The convolutional code is the same as the one used in Fig.

1. Excellent agreements are observed between the actual sim-

ulation results and their analytical approximations. Therefore,

the analytical expressions in (8) and (10) give a very accurate

approximation of the actual FER.

B. Optimum γb

The optimum value of γb at the receiver that minimizes Et

is studied in this subsection.

Before proceeding to the actual optimization, we present

the following theorem about convexity, which will be used in

identifying the optimum system parameters.

Theorem 1: Consider a decreasing function f(x) and an

increasing function g(x). If both f(x) and g(x) are convex,

then f(x)g(x) is convex.
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Fig. 2. Comparison of the simulation FER with the analytical approximation
in (11).

Proof: Consider 0 < x1 < x2 and α ∈ [0, 1]. Define

θ1 = αf(x1)g(x1) + (1 − α)f(x2)g(x2), and θ2 = f(αx1 +
(1−α)x2)g(αx1+(1−α)x2). Since f(x) and g(x) are convex,

we have θ2 ≥ θ3 with θ3 defined as

θ3 = [αf(x1) + (1− α)f(x2)][αg(x1) + (1− α)g(x2)] (12)

Since θ1 = θ1(1 − α + α), the term θ1 can be alternatively

represented as

θ1 = α2f(x1)g(x1) + (1− α)2f(x2)g(x2) +

α(1− α) [f(x1)g(x1) + f(x2)g(x2)] (13)

From (12) and (13), we have

θ3 − θ1
α(1− α)

= [f(x1)− f(x2)][g(x2)− g(x1)] ≥ 0. (14)

Therefore θ2 ≥ θ3 ≥ θ1, and this completes the proof.

We can prove that Λ in (6) is a decreasing function in γb,

and it is convex in γb by showing that ∂2Λ
∂γ2

b
≥ 0, and details are

omitted here for brevity. It is straightforward to show that E0 in

(5) is an increasing and convex function in γb. Therefore, based

on the results in Theorem 1, we have the following corollary

about the convexity of Et = ΛE0.

Corollary 1: For the FER given in (11), the total energy per

information bit, Et, in (7) is convex in γb. �
Once we establish the convexity of Et in γb, the optimum

γb can be solved as stated in the following corollary.

Corollary 2: In a quasi-static Rayleigh fading channel, if the

FER is given in (11), then the optimum γb that minimizes Et

is

γ̂b =
1

2

(
γω +

√
γ2
ω + 4γω

B

A

L

L+ L0

)
(15)

where A =
ξ
M

N0Gd

η , and B = β
Rb

.
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Proof: Since Et is convex in γb, the optimum γb that

minimize Et can be obtained by solving ∂En

∂γb
= 0, which yields

γ2
b − γωγb − γω

B

A

L

L+ L0
= 0 (16)

The result in (15) can be obtained by solving (16).

It should be mentioned here that the optimum γb is the

average Eb/N0 at the receiver. Correspondingly, the optimum

energy per symbol required at the transmitter is

Ês = γ̂b ×N0 × r × log2 M ×Gd, (17)

where γ̂b is the optimum value calculated from (15).

C. Optimum L

The optimum number of information bits L that minimizes

Et is studied in this subsection.

Similar to the results in Corollary 2, the optimum solution of

L relies on the convexity of Et. However, the direct proof of the

convexity of Et with respect to L is quite tedious. To simplify

analysis, we can show that Et is convex in ξ = log(L+ L0).
We can prove that 1) Λ in (6) is an increasing and convex

function in ξ; and 2) E0 in (5) is a decreasing and convex

function in ξ, and details are omitted here for brevity. Therefore,

based on Theorem 1, we have the following corollary regarding

the convexity of Et with respect to ξ.

Corollary 3: For the FER given in (11), the total energy per

information bit Et in (7) is convex in ξ = log(L+ L0). �
Based on the convexity of Et in L, the optimum L is stated

as follows.

Corollary 4: In a quasi-static Rayleigh fading channel, if the

FER is given in (11), then the optimum L that minimize Et

satisfies the following equality

L̂ =

√
A2(k

M
+ γb)2 + 4Ak

M
B −A(k

M
− γb)

2k
M
(Aγb +B)

γbL0 (18)

where A =
ξ
M

N0Gd

η , and B = β
Rb

.

Proof: The optimum L is obtained by solving ∂En

∂ξ = 0,

which yields

k
M (Aγb +B)L2 +AγbL0 (kM − γb)L−Aγ2

bL
2
0 = 0 (19)

The result in (18) can be obtained by solving (19).

It is worth pointing out that even though the result in

Corollary 4 is obtained through ∂En

∂ξ = 0, it is exactly the

same as solving ∂En

∂L = 0 because ∂ξ
∂L = 1

L+L0
�= 0.

D. Joint Optimum γb and L

In (15) and (18), the optimum value of γb is expressed as

a function of L and vice versa. The global optimum operation

point can be achieved by jointly optimizing γb and L.

Since Et is convex in both γb and L, the joint optimum

values can be obtained by treating (15) and (18) as a system of

two equations with two variables in γb and L. The analytical

results are very tedious and are omitted here for brevity.

Alternatively, the joint optimum values of γb and L can

be efficiently calculated by iteratively invoking (15) and (18).

TABLE I
SIMULATION PARAMETERS

L0 48 bits
Bit Rate 300 kbps

η 0.35
β 310.014 mw

N0/2 -174 dBm/Hz
G1 30 dB
κ 3.5
Ml 40 dB

Given an initial value L, we can calculate the optimum γb by

using (15), the output of which is then used to update the value

of L with (18). This procedure can be performed iteratively, and

it will converge to the joint optimum value of γb and L that

achieves the global minimum energy consumption.

IV. NUMERICAL RESULTS

Numerical results are presented in this section. The simula-

tion parameters are summarized in Table 1.

Fig. 3 shows Et as a function of γb, with various values

of L + L0. The distance is d = 100 m. The optimum values

of γ̂b for different L calculated from (15) are marked on the

figure as the optimum operation points. It can be seen from

the figure that Et is a convex function in γb. The optimum

operation points obtained from the analytical results match

perfectly with the simulation results. If γb < γ̂b, the FER is so

high such that the total energy consumption is dominated by

the effect of the retransmissions. In this case, we can reduce
the total energy consumption by increasing γb. For example,

for L + L0 = 10, 000, increasing γb from -2 to 5 dB will

result in an energy saving of 9.5 dB. When γb > γ̂b, Et

increases almost linearly with γb because the FER is low

enough such that the effect of retransmission is negligible. The

result demonstrates that a higher Eb/N0 does not necessarily

mean a better performance. Significant energy saving can be

achieved with carefully choosing the operation point.

In Fig. 4, Et is plotted as a function of L + L0 under

various values of γb. The distance is d = 100 m. The optimum
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values of L̂ for different γb are calculated from (18), and are

marked on the figure. As expected, Et is convex in log(L+L0).
Again, excellent agreement is observed between the analytical

optimum operation points and the simulation results. When

L < L̂, the energy consumption is dominated by the overhead.

Thus significant energy saving can be achieved by slightly

increasing L. When L > L̂, the slope of Et with respect to

log(L + L0) decreases as γb increases. This is because the

impact of increasing L on FER becomes smaller at higher γb.

Therefore, system operates at lower γb is more sensitive to the

frame length.

In the last example, the global optimum Et is shown as

a function of the transmitter-receiver distance d, for systems

employing different modulation schemes. The joint optimum

(γ̂b, L̂) are obtained by iteratively invoking (15) and (18), and

the results are then used to calculate the optimum Et. For

example, at d = 100 m, the optimum values are (2.66 dB, 230

bits), (4.29 dB, 243 bits), and (6.77 dB, 191 bits) for QPSK,

16-QAM, and 64-QAM, respectively. Lower level modulation

has better energy performance at the cost of worse spectral

efficiency. Increasing M from 2 to 4, or from 4 to 6, results in

approximately 5 dB energy loss, when d ≥ 100 m.

V. CONCLUSIONS

The energy efficient design of coded ARQ systems operating

in a quasi-static Rayleigh fading channel has been studied in

this paper. A new log-domain threshold approximation method

has been proposed to analytically quantify the impacts of

receiver Eb/N0 and frame length on the FER, and the results

have been used to facilitate the system optimization. The

optimum transmission energy and frame length that minimize

the energy per information bit have been obtained in closed-

form expressions, and they incorporate the effects of a large

number of practical system operation parameters in hardware,

the PHY layer, and the MAC layer. From the analytical and

simulation results, we have the following observations: 1) The

total energy consumption in ARQ can be reduced by increasing
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Fig. 5. Minimum energy per information bit as a function of distance.

the transmission energy in one transmission attempt; 2) systems

operating at higher Eb/N0 are less sensitive to the frame length;

3) increasing the modulation level by a factor of 4 leads to

approximately 5 dB energy loss; 4) significant energy savings

(as high as 9.5 dB) can be achieved through the proposed

optimum system design.
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