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Optimum Sensor Density in
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Abstract—The optimum sensor node density for one- and two-
dimensional (1-D and 2-D) wireless sensor networks (WSNs)
with spatial source correlation is studied in this paper. The
WSN attempts to reconstruct a spatially correlated signal field
by collecting the location-dependent measurements from the
distributed sensor nodes. The WSN is designed to minimize the
mean square error (MSE) distortion between the original and
the reconstructed signals under the constraint of a fixed power
per unit area. The impacts of node density and spatial data
correlation on the network performance are investigated for both
small networks with finite number of nodes, and large networks
with infinite area, infinite number of nodes, but finite node
density through asymptotic analysis. The interactions among the
various network parameters and their impacts on the system
performance are quantitatively identified with exact analytical
expressions, many of which are in closed-forms. The results
provide guidelines on the design of practical WSNs.

Index Terms—Node density, distortion-tolerant communica-
tion, wireless sensor network, asymptotic analysis, MMSE.

I. INTRODUCTION

A WIRELESS sensor network (WSN) provides au-
tonomous monitoring of physical or environmental con-

ditions by using a group of spatially distributed sensor nodes
transmitting measured data to a fusion center (FC) [1]. One
of the primary challenges faced by the design of a large WSN
is to determine the node density, i.e., the number of nodes
in a unit area, to optimize the network performance under
the energy and/or cost constraints [1]–[12]. Given a fixed
transmission power per unit area, a higher node density means
less power available to each node, which degrades the network
performance due to the reduced signal-to-noise ratio (SNR)
for the signal transmitted by each node. On the other hand,
a higher node density can obtain more data samples per unit
area, which can benefit the system performance. Such a trade-
off relationship necessitates the study of the optimum node
density in practical WSNs.

There have been considerable works in the literature investi-
gating the impacts of node density on the network performance
for both one-dimensional (1-D) and two-dimensional (2-D)
networks [1]-[15]. The seminal work by Gupta and Kumar
[13] discovers that the per node throughput in an ad hoc
network scales with O

(
1√

N logN

)
, with N being the number
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of nodes per unit area, i.e., the node density. The result in [13]
does not consider the spatial data correlation. Data collected
in the real world often contain redundancies due to the spatial
correlation inherent in the monitored object(s). In [14], a
Wiener process is used to model the spatial correlation of
an 1-D field. It is demonstrated that, due to the spatial data
correlation, distortion-free communication can be achieved
even if the per node throughput tends to 0 as N→∞. The
above study is for peer-to-peer networks, where there are
equal numbers of sources and destinations. For many-to-one
networks such as a WSN, it is demonstrated in [15] that
no compression scheme is sufficient to achieve distortion-free
communications.

The analysis in most of the previous works is performed
by using the design metric of network capacity, which is the
maximum throughput supported by a network with error-free
communications. In reality, a small amount of errors might be
acceptable for real world applications such as target detection
[2], [3], [7], target localization [4], information coverage
[5], [6], and information recovery [8]–[12], etc. In [7], the
optimum network density of an 1-D network is studied by
minimizing the detection error probability. In [8], an arbitrary
point on a continuous measurement field is estimated by
interpolating the samples collected by the spatially discrete
sensors. The studies in [8] only consider the distortion from
the spatial interpolation, and the distortions introduced by the
noisy channel are not incorporated in the analysis. A distortion
lower bound is derived in [10] for a network with a finite
number of correlated sources as a function of the number of
sensors and spatial-temporal communication bandwidth. The
analysis in [10] is only applicable to a measurement field with
finite degree-of-freedom.

In [11], the asymptotic optimum sensor density that can
maximize the information collected from a 2-D correlated
random field is obtained under a total energy constraint as the
number of nodes and the measurement field tend to infinity.
A total energy constraint in a large network often leads to
negligible energy per node or per unit area, yet in reality
the energy budget per unit area is non-trivial. A constraint
on a fixed power per unit area, or equivalently, fixed energy
per sample per unit area, is adopted in our previous work
[12] to obtain the asymptotically optimum node density as the
number of nodes and the size of the measurement field tend to
infinity. The power or energy per sample constraint will limit
the instantaneous power of a sensor node, and it can be easily
translated to the energy constraint of a node under a fixed
sampling rate. The results in [12] are only applicable to 1-D
networks, and the analysis is based on an approximation of the
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minimum mean square error (MMSE) spatial interpolation.
In this paper, we investigate the optimum node density

in the 1-D and 2-D distortion-tolerant networks under the
constraint of a fixed power per unit area. The WSN attempts
to reconstruct a spatially correlated signal field by collecting
measurements from distributed sensor nodes. There is no
assumption on the statistical properties of the field, other
than that it forms a continuous random process that is wide
sense stationary (WSS) in the space domain. In recognition
of the distortion-tolerance of many practical applications, the
optimization is performed with respect to the mean square
error (MSE) distortion between the original and the recovered
signals. Each sensor node collects spatially correlated samples
of the measurement field, and forwards the information to a
data FC through a noisy link. The FC reconstructs an estimate
of the signal field by exploiting the spatial data correlation
with an optimum MMSE receiver. Under the constraint of a
fixed transmission power per unit area, the impacts of node
density and spatial data correlation on MSE are investigated
for both small networks with finite number of nodes and
large networks with infinite area but finite node density. Exact
analytical expressions are obtained to describe the interactions
and tradeoff relationship between the SNR per node, which
is inversely proportional to the node density, and spatial
sample correlation, which increases with the node density,
for both 1-D and 2-D networks. It is observed that the 1-D
and 2-D networks have similar performance trends and their
performance difference diminishes as the spatial correlation
increases.

The remainder of this paper is organized as follows. Section
II introduces the system model and a two-step MMSE esti-
mation method. Sections III and IV study the impacts of the
node density on the performance of 1-D and 2-D networks,
respectively. In these two sections, the optimum node densities
in various networks are identified, and numerical examples are
presented to demonstrate the interactions among the various
system parameters. Section V concludes the paper.

II. PROBLEM FORMULATION

A. System Model

Consider a WSN with N sensor nodes evenly distributed
over a measurement field Ωη , as shown in Fig. 1(a) for
an 1-D network, and Fig. 1(b) for a 2-D network. The
smallest distance between two adjacent sensors is d. The n-
th node is placed at a location with coordinate ηn ∈ Ωη , for
n = 1, 2, · · · , N . The uniform node distribution shown in Fig.
1(a) is adopted here for mathematical tractability, and similar
configurations have been widely used in the literature [7]–[9],
[11], [12], and [14]. Define the node density, δ, as the number
of nodes in a unit area.

Each sensor will measure a location dependent physical
quantity, x(ηn), such as vibration intensity of a bridge, and
humidity, etc. Data collected from two sensors close to each
other are often strongly correlated due to the spatial redun-
dancy of the measured object. In this paper, the correlation
between two data samples are modeled as follows

E [x(ηp)x(ηq)] = ρ‖ηp−ηq‖, (1)
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(a) An 1-D network
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(b) A 2-D network

Fig. 1. The 1D and 2D networks with evenly distributed nodes.

where ρ ∈ [0, 1] is the spatial correlation coefficient, E(·)
represents mathematical expectation, and ‖a‖ =

√
aaT is the

L2-norm of the column vector a with (·)T representing matrix
transpose.

It is assumed that sensors deliver the measured data to
the FC through an orthogonal media access control (MAC)
scheme such that collision-free communication is achieved at
the FC. The signal observed by the FC from the n-th sensor
node is

yn =
√
Pnx(ηn) + zn, (2)

where Pn is the average transmission power, or average energy
per sample, of the n-th node, and zn is the additive white
Gaussian noise (AWGN) with variance σ2

z . It is assumed that
the total power per unit area is fixed at P0 to ensure a fair
comparison among networks with different node densities and
different sizes. Given a network with node density δ, the power
per node is then Pn = P0

δ .

B. Optimum MMSE Detection

The FC will obtain an estimate of the spatially continuous
quantity, x(η), ∀η ∈ Ωη, over the entire measurement field,
by extracting information transmitted from the N sensors, y =
[y1, · · · , yN ]T ∈ RN×1, where R is the set of real numbers.
The MSE at any location η is

σ2
η = E [x̂(η)− x(η)]

2
,η ∈ Ωη (3)

where x̂(η) is an estimate of x(η) at the FC.
The optimum linear receiver that minimizes σ2

η is the
MMSE receiver described as follows [18]

x̂(η) =
√
Pnr

T
η

(
PnRss + σ2

zIN
)−1

y, (4)

where rη = E [x(η)xs]=[ρ‖η−η1‖, · · · , ρ‖η−ηN‖]T ∈RN×1

with xs = [x(η1), · · · , x(ηN )]T , Rss =E
[
xsx

T
s

]∈RN×N

with the (p, q)-th element being ρ‖ηp−ηq‖ as defined in (1),
and IN is a size-N identity matrix.

With the optimum MMSE receiver given in (4), the MSE
σ2
η can be calculated as [18]

σ2
η = 1− rTη

(
Rss +

δ

γ0
IN

)−1

rη , (5)
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where γ0 = P0

σ2
z

is the SNR per unit area. The MSE σ2
η given

in (5) is a function of the location η, the SNR γ0, the spatial
correlation coefficient ρ, and the node density δ.

Given a fixed transmission power per unit area, the node
density, δ, plays a critical role on the MSE σ2

η . A smaller node
density means more transmission power per node, thus a better
SNR per sample. On the other hand, a smaller node density
means less samples per unit area, or a smaller correlation
among the samples, and this will degrade the estimation
accuracy.

In order to distinguish the opposite impacts of the node den-
sity on the SNR per sample and the spatial sample correlation,
we decompose the MMSE receiver described in (4) into two
steps as follows.

Definition 1: Two-Step MMSE:
1) The FC first obtains an estimate of the data at the sensor

locations: xs = [x(η1), · · · , x(ηN )]T ∈ RN×1, with a linear
MMSE receiver as

x̂s = WT
s y, (6)

where x̂s = [x̂(η1), · · · , x̂(ηN )]T is an estimate of xs. The
MMSE matrix Ws ∈ RN×N is designed to minimize the
MSE per node σ2

s,N = 1
NE

[‖x̂s − xs‖2
]
.

2) The FC obtains an estimate of the data at an arbitrary
location, x̂(η), ∀η ∈ Ωη , by interpolating x̂s with the MMSE
criterion,

x̂(η) = wT
slx̂s, (7)

where the vector, wsl ∈ RN×1, is designed to minimize the
MSE σ2

η = E [x̂(η)− x(η)]
2.

Lemma 1: The two-step MMSE receiver described in Def-
inition 1 is equivalent to the optimum MMSE given in (4).

Proof: The proof is in Appendix A.
Decomposing the optimum MMSE of (4) into the two-

step MMSE allows us to study the two opposite effects of
the node density on the MSE separately. In the next two
sections, we will investigate, respectively, the impacts of the
node density on the 1-D and 2-D networks by following the
two-step MMSE.

III. OPTIMUM NODE DENSITY IN 1-D NETWORKS

In this section, we study the optimum node density in an 1-
D network, where the N sensor nodes are evenly distributed
over a length-L linear section as shown in Fig. 1(a). In a
linear network, the n-th node is placed at a location with
the coordinate ηn = ηn = (n − 1)d. Following the two-
step MMSE given in Definition 1, we will study in the
next two subsections the impacts of the node density on
the performance of the two steps: MMSE estimation of the
data at the sensor locations, and MMSE interpolation for the
estimation of the data at arbitrary locations.

A. MMSE Estimation at Sensor Locations

From (6), the optimum Ws that minimizes σ2
s,N can be

found through the orthogonal principal, E
[
(x̂s − xs)y

T
]
= 0.

The result is

WT
s =

√
PnRss

(
PnRss + σ2

zIN
)−1

. (8)

The error correlation matrix, R(s)
ee = E

[
ese

T
s

]
, with es =

x̂s − xs, can be calculated by

R(s)
ee =Rss−Rss

(
Rss +

δ

γ0
IN

)−1

Rss=
(
R−1

ss +
γ0
δ
IN

)−1

, (9)

where the orthogonal principal is used in the first equality, and
the second equality is based on the identity D−1+D−1C(A−
BD−1C)−1BD−1 = (D−CA−1B)−1. The MSE can then

be calculated as σ2
s,N = 1

N trace
(
R

(s)
ee

)
, where trace(A)

returns the trace of the matrix A. The calculation of the MSE
involves matrix inversion and the trace operation. Performing
the eigenvalue decomposition of Rss in (9), we have

σ2
s,N =

1

N

N∑
n=1

(
1

λn
+

γ0
δ

)−1

, (10)

where λn is the n-th eigenvalue of Rss.
In order to explicitly identify the impacts of the node density

and the spatial data correlation on the MSE, we resort to the
asymptotic analysis by letting N → ∞ while keeping a finite
node density δ. The results are presented as follows.

Proposition 1: When N → ∞ while keeping a finite δ, the
asymptotic MSE of the estimated data at the sensor locations
in an 1-D network is

σ2
s � lim

N→∞
σ2
s,N =

⎡
⎣(1 + γ0

δ

)2

+
4γ0ρ

2
δ

δ
(
1− ρ

2
δ

)
⎤
⎦
− 1

2

. (11)

Proof: The proof is given in Appendix B.
In (11), the opposite effects of node density on the asymp-

totic MSE are manifested in the form of two functions,

f1(δ) � γ0

δ , and f2(δ) � ρ
2
δ

1−ρ
2
δ

. The first function, f1(δ),

is the SNR per node, which is inversely proportional to δ.
Thus f1(δ) translates a positive correlation between δ and the
asymptotic MSE. The second function, f2(δ), is related to
the spatial correlation among sensors, and it is an increasing
function of δ. Hence, f2(δ) translates a negative correlation
between δ and the asymptotic MSE. Therefore, δ exhibits two
opposite effects on MSE through f1(δ) and f2(δ). For the
estimation of data at the sensor node locations, it is shown in
the following corollary that the effect of the SNR per node,
f1(δ), dominates that of the spatial correlation, f2(δ).

Corollary 1: The asymptotic MSE given in (11) is a mono-
tonic increasing function of the node density, δ.

Proof: The proof is in Appendix C.
The result in Corollary 1 indicates that, the asymptotic MSE

for estimating data at the sensor node locations can benefit
from a smaller density. Therefore, if we only want to obtain the
data at some discrete locations, we should use a node density
that is as small as allowed by the application, i.e., placing
exactly one sensor at each desired measurement location will
obtain the optimum performance.

Fig. 2 shows the asymptotic MSE as a function of the node
density, δ. The SNR per unit area is γ0 = 10 dB. Data
samples are assumed to be a zero-mean Gaussian process
with the spatial auto-correlation function given in (1). The
simulation results are obtained by using N = 1,000 nodes to
approximate infinite nodes. Excellent agreement is observed
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Fig. 2. The asymptotic MSE of the data samples in an 1-D network (γ0 = 10
dB).

between the asymptotic analytical results with N → ∞ and
the simulation results with N = 1,000. As pointed out by
Corollary 1, the MSE increases monotonically as δ increases,
indicating the dominance of the SNR per node over the spatial
correlation. It can be seen from Fig. 2 that the MSE approaches
a constant value as δ → ∞. This indicates a balance between
the opposite effects between f1(δ) and f2(δ) as δ → ∞, which
is corroborated by the following corollary.

Corollary 2: For the estimation of the data at the sensor
locations, the asymptotic MSE is upper bounded by

σ2
s ≤

(
1− 2γ0

log ρ

)− 1
2

(12)

Proof: Eqn. (12) can be directly proved by setting
limδ→∞ σ2

s in (11).
The asymptotic MSE upper bound is determined by the

spatial correlation and the SNR per unit area.

B. MMSE Spatial Interpolation

The estimates of the data at the sensor locations can be
interpolated to get an estimate of the data at any location.

As discussed in Definition 1 and Lemma 1, MMSE spatial
interpolation can obtain the optimum performance by mini-
mizing σ2

η given in (3). The MSE given in (3) depends on the
location η. Since we are interested in the reconstruction fidelity
of the entire measurement field, the worst case scenario will
be considered by estimating the data located in the middle of
two neighboring sensors, with coordinate η′n = (n− 1

2 )d. Cor-
respondingly, denote the data vector to be estimated through
interpolation as xd = [x(η′1), · · · , x(η′N )]T∈ RN×1.

Following the orthogonal principal, E
[
(x̂d − xd)x̂

T
s

]
= 0,

where x̂d is an estimate of xd, the MMSE spatial interpolation
can be expressed by

x̂d = RdŝR
−1
ŝŝ x̂s, (13)
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Fig. 3. The MSE of the spatial interpolations under various node number
N in an 1-D network (ρ = 0.5, γ0 = 10 dB).

where

Rdŝ � E(xdx̂
T
s ) =

√
PnRdsWs, (14a)

Rŝŝ � E(x̂sx̂
T
s ) = WT

s (PnRss + σ2
zI)Ws, (14b)

with Rds � E(xdx̂s) being a Toeplitz matrix. The first
row and column of Rds are [1, 1, ρd, · · · , ρ(N−2)d]T and
[1, ρd, · · · , ρ(N−1)d]T , respectively.

Combining (13) with (14), we have

x̂d =
√
PnRds

(
PnRss + σ2

zI
)−1

y. (15)

The corresponding error correlation matrix, R
(d)
ee �

E
[
(x̂d − xd)(x̂d − xd)

T
]
, can then be calculated by

R(d)
ee = Rss −Rds

(
Rss +

δ

γ0
IN

)−1

Rsd, (16)

where Rdd = E(xdx
T
d ) = Rss is used in the above equation,

and Rsd = RT
ds. The MSE for spatial interpolation is σ2

d,N =
1
N trace

(
R

(d)
ee

)
.

The MSE for the spatial interpolation is numerically evalu-
ated for different values of δ and N , and the results are shown
in Fig. 3. The spatial correlation coefficient is ρ = 0.5 and
the SNR per unit area is γ0 = 10 dB. When N is small, e.g.,
N < 30, the MSE is convex in δ. When N is large, e.g.,
N ≥ 30, the spatial interpolation MSE becomes a monotoni-
cally decreasing function of δ. In addition, increasing N from
30 to 1000 only leads to a marginal performance improvement.
The following proposition presents the asymptotic MSE as
N → ∞.

Proposition 2: When N → ∞ while keeping a finite δ, the
MSE of the MMSE interpolation in an 1-D network is

σ2
d � lim

N→∞
σ2
d,N=

(
δ

γ0
+

1− ρ
1
δ

1 + ρ
1
δ

) 1
2
(

δ

γ0
+

1 + ρ
1
δ

1− ρ
1
δ

)−1
2

. (17)

Proof: The proof is in Appendix D.
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Fig. 4. The asymptotic MSE of the spatial interpolation in an 1-D network
(γ0 = 10 dB).

Define f3(δ) � 1+ρ
1
δ

1−ρ
1
δ

. It can be easily shown that f3(δ) is

an increasing function of δ, and its impact on the asymptotic
MSE is opposite to the SNR per node, f1(δ). The following
corollary shows that σ2

d is dominated by the effects of f3(δ).
Corollary 3: The asymptotic MSE given in (17) is a mono-

tonic decreasing function of the node density, δ.
Proof: The proof is in Appendix E.

From Corollaries 1 and 3, it is apparent that δ has opposite
impacts on σ2

s and σ2
d. The results in Corollary 3 can be

intuitively explained by the fact that the spatial interpolation
depends mainly on the spatial correlation among the data
samples, and a higher density means a stronger correlation
among the data samples, thus a better estimation fidelity.

The asymptotic MSE of the data interpolation is shown in
Fig. 4, where it is apparent that σ2

d is a decreasing function of
δ. The simulation parameters are the same as those in Fig. 2.
Again, perfect agreement is observed between the simulation
results with N = 1,000 and asymptotic analytic results with
N → ∞. When δ → ∞, σ2

d is lower bounded, and this is
described in the following corollary.

Corollary 4: The following inequality holds for σ2
s and σ2

d

σ2
d ≥

(
1− 2γ0

log ρ

)− 1
2

≥ σ2
s (18)

Proof: Since σ2
d is a decreasing function of δ, its min-

imum value can be obtained by letting δ → ∞ in (17), and
(18) follows immediately.

The result in (18) indicates that σ2
d is always bigger than σ2

s

and they converge when δ → ∞. This can be explained by the
fact that the estimation of xd is based on the estimation accu-
racy of xs, thus the fidelity of x̂d can not exceed that of x̂s.
This result further corroborates that, for the estimation of data
at a discrete location, a sensor node needs to be placed at the
desired location to ensure the optimum performance, because
interpolation will always lead to an inferior performance.
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Fig. 5. Optimum node density v.s. correlation coefficient ρ in an 1-D network
(γ0 = 10 dB).

It is observed from Fig. 4 that, when δ is small, the MSE
decreases dramatically as δ increases. When δ reaches a cer-
tain threshold, no apparent performance gain can be achieved
by increasing δ further, i.e., the slope of σ2

d approaches zero
as δ increases. Therefore, the optimum node density can be
chosen as the point such that

∣∣∣∂σ2
d

∂δ

∣∣∣ ≤ ε, with ε being a small
number.

From (17), the slope of σ2
d can be calculated as

∂σ2
d

∂δ
=

σ2
d

2
·

⎡
⎢⎣

1
γ0

+ 2 log ρ·ρ 1
δ

δ2·(1+ρ
1
δ )2

δ
γ0

+ 1−ρ
1
δ

1+ρ
1
δ

−
1
γ0

− 2 log ρ·ρ 1
δ

δ2·(1−ρ
1
δ )2

δ
γ0

+ 1+ρ
1
δ

1−ρ
1
δ

⎤
⎥⎦ (19)

The optimum node density can then be obtained by numeri-
cally solving the equation

∣∣∣∂σ2
d

∂δ

∣∣∣
δ0
=ε.

Fig. 5 shows the optimum node density as functions of the
spatial correlation coefficient ρ and the number of nodes N .
The SNR per unit area is γ0 = 10 dB. When N is small
(N = 2 and N = 5), the MSE is convex in δ as shown in Fig.
3, and the optimum node density is obtained by finding the
value of δ that minimizes the MSE. When N is large (N =
30 and N → ∞), the optimum node density is obtained by
solving

∣∣∣∂σ2
d

∂δ

∣∣∣ ≤ ε with ε = 10−3. The optimum node density
decreases as ρ increases for all the systems. In addition, given
δ, the optimum node density increases as N increases, and
it is upper bounded by the asymptotic case with N → ∞.
The optimum node density for N = 30 is very close to the
asymptotic results with N → ∞.

IV. OPTIMUM NODE DENSITY IN 2-D NETWORKS

The impacts of node density on the estimation fidelity
in a 2-D network are studied in this section. In a 2-D
network, consider the N sensor nodes located over a grid on
a square region with area

√
Nd × √

Nd as shown in Fig.
1(b). The coordinates for the nodes are ηij = [id, jd]T , for
i, j=0, · · · ,K−1 with K =

√
N . It should be noted that the

node density in a 2-D network is δ = 1
d2 , which is different

from the 1-D case.
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Fig. 6. The asymptotic MSE of the data samples estimation in the 1-D and
2-D networks (γ0 = 10 dB).

Stacking the data from all the sensors into a column vector,
we have ξs = [xT

0 , · · · ,xT
K−1]

T ∈ RN×1, where xm =
[x(ηm0), · · · , x(ηm(K−1))]

T ∈ RK×1. The auto-correlation
matrix, Φss = E

[
ξsξ

T
s

] ∈ RN×N , can be expressed in the
form of a block Toeplitz matrix as

Φss =

⎛
⎜⎜⎜⎝

R0 R1 · · · RK−1

R1 R0 · · · RK−2

...
...

. . .
...

RK−1 RK−2 · · · R0

⎞
⎟⎟⎟⎠ , (20)

where Rm = E (xmx0) ∈ RK×K is a symmetric
Toeplitz matrix with the first row and first column being
[rm,0, rm,1, · · · , rm,K−1]

T ∈ Rk×1, and

rm,k = E [x(ηmk)x(η00)] = ρ

√
k2+m2

δ . (21)

The matrix, Φss, assumes the form of a Toeplitz-block-
Toeplitz (TBT) matrix [17], i.e., Φss is a block Toeplitz
matrix, and each sub-matrix is also a Toeplitz matrix.

A. MMSE Estimation at Sensor Locations

Following the same procedure as in Section III-A, we have
the MSE, ϑ2

s,N � 1
NE

[
‖ξ̂s − ξs‖2

]
, as

ϑ2
s,N =

1

N
trace

(
Φ−1

ss +
γ0
δ
IN

)−1

, (22)

where ξ̂s is the MMSE estimate of ξs. Performing the eigen-
value decomposition of Φss in (20), we can rewrite the MSE
in (22) as

ϑ2
s,N =

1

N

K−1∑
k=1

K−1∑
m=1

(
1

λk,m
+

γ0
δ

)−1

, (23)

where λk,m, for k,m = 0, 1, · · · ,K − 1, are eigenvalues of
Φss.
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Fig. 7. The MSE of the spatial interpolations under various node number
N in the 1-D and 2-D networks (ρ = 0.8, γ0 = 10 dB).

Proposition 3: When N → ∞ while keeping a finite node
density δ, the asymptotic MSE of the estimated data at the
sensor locations in a 2-D network with spatial correlation
coefficient ρ is

ϑ2
s � lim

N→∞
ϑ2
s,N=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
1

Λ′
ss(f1, f2)

+
γ0
δ

]−1

df1df2, (24)

where

Λ′
ss(f1, f2)=

+∞∑
k=−∞

+∞∑
m=−∞

ρ

√
k2+m2

δ e−j2π(kf1+mf2). (25)

Proof: The results in (24) can be obtained by applying
[17, Theorem 1] to (23), which is the extension of the Szego’s
theorem to TBT matrices.

The expression in (24) can be easily evaluated numerically
given that the integrals are of finite limits. Even though
Λ′
ss(f1, f2) is expressed as the sum of an infinite series,

the value of ρ

√
k2+m2

δ decreases exponentially as k and m
increase, thus Λ′

ss(f1, f2) can be accurately approximated with
moderate limits on k and m.

Fig. 6 shows the asymptotic MSE ϑ2
s as a function of the

node density δ. For comparison, the MSE σ2
s for an 1-D

network is also shown in this figure. The SNR is γ0 = 10
dB. Similar to the 1-D case, the asymptotic MSE ϑ2

s is a
monotonic increasing function of δ. In Fig. 6, given a fixed
node density, the asymptotic 2-D MSE is larger (worse) than
the asymptotic 1-D MSE. This can be explained by the fact
that each node in the 2-D network needs to cover a larger
area than its 1-D counterpart. The difference between the 1-D
and 2-D cases gradually diminishes as the spatial correlation
coefficient, ρ, increases, because the impact of node distance
decreases as ρ getting close to 1.
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B. MMSE Spatial Interpolation

The performance of the spatial interpolation in a 2-D
network is studied in this subsection. Similar to the 1-D
case, we consider the worst case scenario by interpolating
the data located in the middle of the square formed by four
adjacent sensor nodes, with coordinates of the data points
to be estimated being η′

ij = [(i + 1
2 )d, (j + 1

2 )d]
T , for

i, j = 0, · · · ,K− 1. Correspondingly, the data vector can
be expressed as ξd = [x′T

0 , · · · ,x′T
K−1]

T ∈ RN×1, where
x′

m = [x(η′
m0), · · · , x(η′

m(K−1))]
T ∈ RK×1.

Following the same procedure as in the 1-D case, the error
correlation matrix, Φ(d)

ee =E
[
(ξ̂d−ξd)(ξ̂d−ξd)T

]
, with ξ̂d being

the MMSE estimate of ξd, can be calculated by

Φ(d)
ee = Φss −Φds

(
Φss +

δ

γ0
IN

)−1

Φsd, (26)

where Φdd = E(ξdξ
T
d ) = Φss is used in the above equation,

Φds = E
[
ξdξ

T
s

]
, and Φds = ΦT

sd. The cross-correlation
matrix, Φds, can be expressed as

Φds=

⎛
⎜⎜⎜⎜⎜⎝

R′
0 R′

0 R′
1 · · · R′

(K−2)

R′
1 R′

0 R′
0 · · · R′

(K−3)

...
. . .

. . .
. . .

...
R′

(K−2) R′
(K−3) · · · R′

0 R′
0

R′
(K−1) R′

(K−2) · · · R′
1 R′

0

⎞
⎟⎟⎟⎟⎟⎠ , (27)

where R′
m = E (x′

mx0) ∈ RK×K is a non-
symmetric Toeplitz matrix with the first row being
[r′m,0, r

′
m,0, r

′
m,1, · · · , r′m,K−2]

T ∈ Rk×1 and the first col-
umn [r′m,0, r

′
m,1, · · · , r′m,K−1]

T ∈ Rk×1, and r′m,k =
E [x(η′

mk)x(η00)] can be expressed as

r′m,k = ρ‖η
′
mk−η00‖ = ρ

√
(k+1

2
)2+(m+1

2
)2

δ . (28)

The matrix Φds is in the form of a non-symmetric TBT matrix.
From (26), the MSE of the 2-D interpolation in a network

with N nodes can be calculated as ϑ2
d,N = 1

N trace
(
Φ

(d)
ee

)
.

Proposition 4: When N → ∞ while keeping a finite δ,
the asymptotic MSE of the data estimated through spatial
interpolations in a 2-D network with the spatial correlation
coefficient ρ is

ϑ2
d�lim

N→∞
ϑ2
d,N=

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
Λ′
ss(f1, f2)−

|Λ′
ds(f1,f2)|2

Λ′
ss(f1,f2)+

δ
γ0

]
df1df2, (29)

where Λ′
ss(f1, f2) is given in (25), and Λ′

ds(f1, f2) is com-
puted as

Λ′
ds(f1, f2)=

+∞∑
k=−∞

+∞∑
m=−∞

ρ

√
(k+ 1

2
)2+(m+1

2
)2

δ e−j2π(kf1+mf2). (30)

Proof: The proof is in Appendix F.
Fig. 7 shows the numerical and simulated MSE of the

spatial interpolation in the 2-D network, and the results for
the 1-D case are also shown in the figure for comparison. The
correlation coefficient is ρ = 0.8. The SNR is γ0 = 10 dB.
Simulation results with N = 1,600 are used to approximate
the asymptotic results with N → ∞. For both the 1-D and
2-D cases, the MSE is convex in δ when N is small, and
it becomes a monotonic decreasing function of δ when N is
large. It can be seen that the 2-D network has a worse MSE
compared to its 1-D counterpart. The performance difference
between the 1-D and 2-D networks becomes smaller as either
N or δ increases.

When N is small such that ϑ2
d,N is convex in δ, the optimum

node density in a 2-D network can be numerically identified
by solving |∂ϑ2

d

∂δ | = 0. When N is large or tends to infinity,
the optimum or asymptotically optimum node density can be

obtained by numerically solving |∂ϑ
2
d,N

∂δ | = ε, with ε being a
very small number. Fig. 8 shows the optimum node density
as a function of ρ in the 1-D and 2-D networks. In the figure,
ε = 10−3 is used for both 1-D and 2-D networks when N
is large. For a fixed ρ, the optimum node density increases
as N increases, and it is upper bounded by the asymptotic
result. Therefore, the 1-D and 2-D networks have similar
performance trends. For a given ρ, the optimum node density
of the 2-D network is slightly higher than its 1-D counterpart.

V. CONCLUSIONS

In this paper, the optimum sensor node densities for 1-D
and 2-D WSNs with spatial source correlation were studied.
The impacts of the node density on the MSE of the data
reconstructed at the FC were investigated for both small
networks with finite number of nodes, and large networks with
infinite number of nodes. Exact analytical expressions of the
MSE, many in closed-forms, were obtained for the 1-D and
2-D networks. The analytical results quantitatively identified
the interactions among the various system parameters and
the estimation fidelity, and the results provide insights and
guidelines on the design of practical WSNs.

There were three observations. First, if the network only
needs to estimate spatially discrete data, placing exactly one
sensor at the desired measurement locations will generate
the optimum performance. Second, for the estimation of the
data at arbitrary locations, the optimum node density can be
found when the MSE-density slope is close to zero, and the
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optimum density decreases as the spatial correlation coefficient
increases. Finally, the 1-D and 2-D networks have similar
performance trends with respect to node density, and their
performance difference diminishes as the spatial correlation
coefficient increases.

APPENDIX

A. Proof of Lemma 1

In Step 2, the MMSE vector wsl that minimizes σ2
η can be

obtained through the orthogonal principal [18], E{[wT
slx̂s −

x(η)]x̂T
s } = 0, and the result is

wT
sl=

√
Pnrη

(
PnRxx + σ2

zIN
)−1W−1

s ,

where (2) and (6) are used in the above equation. Combining
the above equation with (6) and (7) leads to (4).

B. Proof of Proposition 1

Based on Szego’s Theorem [16], when N → ∞, (10) can
be rewritten as

σ2
s = lim

N→∞
σ2
s,N =

∫ 1
2

− 1
2

[
1

Λss(f)
+

γ0
δ

]−1

df, (31)

where Λss(f) =
∑+∞

n=−∞ ρ|n|de−jn2πf is the discrete-time
Fourier transform (DTFT) of the sequence,

{
ρ|n|d

}
n

, and it
can be calculated by

Λss(f) =
1− ρ2d

1 + ρ2d − 2ρd cos(2πf)
. (32)

Substituting (32) into (31), and solving the integral with
[19, eqn. (2.553.3)], we have the result in (11).

C. Proof of Corollary 1

From (11), it is equivalent to show that g1(d) = (1+γ0d)
2+

4γ0d
ρ2d

1−ρ2d is a monotonic increasing function of d = 1
δ .

Taking the first derivative of g1(d), we have

g′1(d) =
2γ0

(1−ρ2d)2 × g2(d, γ0), (33)

where g2(d, γ0) is defined as

g2(d,γ0)�
(
1−ρ2d

)2
(1+γ0d)+2ρ2d

(
1−ρ2d)+4d log(ρ)ρ2d (34)

From (33), in order to prove g′1(d) ≥ 0, it is sufficient to
prove that g2(d, 0)≥0 because g2(d, γ0) ≥ g2(d, 0). Let v =
ρ2d ∈ [0, 1], then g2(d, 0) can be rewritten as

g3(v) � g2(d, 0) = 1− v2 + 2v log(v), 0 ≤ v ≤ 1 (35)

It can be easily shown that g′′3 (v)=2( 1v − 1) ≥ 0, ∀v ∈ [0, 1].
Therefore g3(v) is quadratic on [0, 1] with the minimum value
obtained at the solution of g′3(v) = −2v + 2 log(v) + 2 =
0, which is v = 1. Substituting v = 1 into (35), we have
min{g3(v)} = 0. Therefore, g2(d, γ0) ≥ g2(d, 0) = g3(v) ≥
0, and this completes the proof.

D. Proof of Proposition 2

The Toeplitz matrix, Rds, is uniquely determined by the
sequence tds = [t−(N−1), · · · , t0, · · · , tN−1]

T , where tn =

ρ
d
2 ρ|n+1|d when n < 0, and tn = ρ

d
2 ρnd otherwise. When

N → ∞, the DTFT of the sequence tds can be calculated as

Λds(f) = ρ
d
2

(1− ρd)(1 + ej2πf )

1 + ρ2d − 2ρd cos(2πf)
. (36)

Based on [16, Lemma 2], Rds is asymptotically equiv-
alent to a circulant matrix, Cds = UH

NDdsUN , where
UH

N is the unitary discrete Fourier transform (DFT)
matrix with the (m,n)-th element being (Dds)m,n =
1√
N
exp

[
−j2π (m−1)(n−1)

N

]
, and Dds is a diagonal matrix

with its k-th diagonal element being (Dds)k,k = Λds

(
k−1
N

)
.

Similarly, the Toeplitz matrix, Rss, is asymptotically equiv-
alent to a circulant matrix, Css = UH

NDssUN , where Dss

is a diagonal matrix with its k-th diagonal element being
(Dss) = Λss

(
k−1
N

)
, with Λss(f) defined in (32).

Based on [20, Theorem 2.1], the error correlation ma-
trix, R(d)

ee , is asymptotically equivalent to a circulant matrix,

C
(d)
ee = Css − Cds

(
Css +

δ
γ0
I
)−1

CH
ds = UH

ND
(d)
ee UN ,

where D
(d)
ee = Dss −Dds

(
Dss +

δ
γ0
I
)−1

DH
ds.

Based on Szego’s Theorem, we have

σ2
d =

∫ 1
2

− 1
2

[
Λss(f)− |Λds(f)|2

Λss(f) +
δ
γ0

]
df. (37)

Substituting (32) and (36) into the above equation and simpli-
fying leads to (17).

E. Proof of Corollary 3

The MSE in (17) can be alternatively represented as

σ2
d =

{
1 +

[
f−1
3 (δ)− f3(δ)

]
/
[
f−1
1 (δ) + f3(δ)

]} 1
2 . (38)

Since f1(δ) is a decreasing function of δ and f3(δ) is an
increasing function of δ, it is straightforward to show that[
f−1
3 (δ)− f3(δ)

]
/
[
f−1
1 (δ) + f3(δ)

]
is a decreasing function

of δ, and this completes the proof.

F. Proof of Proposition 4

According to [17, Lemma 1], the TBT matrices, Φss

and Φds, are asymptotically equivalent to circulant-block-
circulant (CBC) matrices, Bss and Bds, respectively, where
the eigenvalues of Bss and Bds are samples of Λ′

ss(f1, f2)
and Λ′

ds(f1, f2), respectively [17, Theorem 3]. In addition,
the CBC matrices, Bss and Bds, share the same orthonormal
eigenvectors [21]. Once the asymptotic equivalence is estab-
lished, the rest of the proof follows the same procedure as
described in Appendix D for the 1-D case.
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